
SLS & MLS series LINEAR POSITION SENSORS

INNOVATION IN MOTION

The SLS and MLS series of linear position sensors are designed to provide maximum performance benefits within an extremely compact size. Using the proven benefits of Hybrid Track Technology and including a number of innovative design features, these position sensors are ideally suited to applications where high performance and reliability matched by competitive pricing and rapid despatch are of paramount importance.

Hybrid track

The hybrid track comprises a high resistivity conductive plastic film bonded to a precision wire-wound element. The conductive plastic film is wiped by a precious metal contact. The technology provides infinite resolution and a very long life (since the majority of the current still flows in the wire, the carbon content of the conductive plastic film is low, and the film is therefore very hard). Track linearity is very good, temperature coefficient of resistance is low and predictable and resistance stability with change in humidity is excellent.

Choice of mounting

A wide choice of mounting options are available and include self-aligning bearings, body clamp kits and flange mounting kits. Spring loaded shaft operation is offered on models SLS130 and SLS220.

Features

- Compact body to stroke length
- Sealing to IP66 and corrosion resistant rod end bearings
 - Cable integrally moulded
 - Reduced weight
 - Rapid despatch
 - CE approved

Benefits

- •Reduced installation space
- Suitable for hostile environments
- Excellent strain relief with secure sealing
- · Ideal for mobile applications
- •Eliminates customer inventory
- Confidence in EMC performance

EMC Directive 2004/108/EC

The products detailed in this document have been tested to the requirements of EN61000-6-3 (Emissions) and EN61000-6-2 (Immunity).

Quality Assurance

Penny+Giles are accredited to BS EN ISO9001:2008 Quality is at the heart of all our systems ensuring the reliability of our products from initial design to final despatch.

Certificate No. LRQ 0924881

ATEX 94/9/EC (100a) and 1999/92/EC (137) Directives

Penny+Giles SLS and MLS products are potentiometers and as such are classed as 'simple apparatus' according to the definition in paragraph 3.21 (a) of BS EN60079-14:1997. 'Simple apparatus' is not certified, but may be used as part of an intrinsically safe circuit providing it is used with a suitable interface of associated apparatus (e.g. a safety barrier). A full declaration of compliance can be supplied on request.

Environmental protection

In addition to the IP66 protection that can be selected when ordering, an additional protective sleeve can be specified to protect the operating shaft and enhance the performance of the SLS130, MLS130, SLS190 and SLS320 models, making them especially suited to particularly harsh applications in motor racing, agricultural, material handling, construction, steel manufacturing and structural monitoring applications.

LINEAR POSITION SENSORS

High integrity reduces system cost

Hybrid track technology sensors used in a control system allow simple, low current electronics to be used, while the low hysteresis, low electrical noise and the self-compensating effect for track wear allow the system designer to achieve improved system accuracy and long term integrity without increasing system costs. The technology also enables quick, easy installation.

Availability

The SLS and MLS series of linear position sensors are designed to provide the user with the widest choice of options to suit a wide range of applications. We offer the designer a menu of options so the most suitable type can be selected to suit the control system design. Cell manufacturing allows us to supply in rapid despatch times.

Total reliability

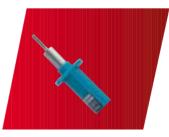
Hybrid track technology provides a highly reliable solution for absolute position sensing problems. The self-cleaning, long life contact design and stable, predictable output of the hybrid track improves service life and reduces the need for regular maintenance or recalibration of the control system.

SLS095 Page 4

- Stroke length to 100mm
- 9.5mm body diameter
- Self aligning bearings, body clamp or flange mounting
- Sealed to IP66

SLS130 Page 6

- Stroke length to 200mm
- 13mm body diameter
- Self aligning bearings, body clamp or flange mounting
- · Spring operated shaft kit
- Protective sleeve
- Sealed to IP66


MLS130 Page 8

- Stroke length to 200mm
- 13mm body diameter
- High strength metal rod ends, quick release joints or M4 studs
- Protective sleeve
- Sealed to IP66
- Raychem™DR25 cable

SLS190 Page 10

- Stroke length to 350mm
- 19mm body diameter
- Self aligning bearings, body clamp or flange mounting
- Protective sleeve
- Sealed to IP66

SLS220 Page 12

- Stroke length 10 or 20mm
- 22mm body diameter
- Flange mounting
- Spring loaded operation

SLS320 Page 14

- Stroke length to 1600mm
- 32mm body diameter
- Self aligning bearings body clamp or flange mounting
- Protective sleeve
- Sealed to IP66

SLS095 linear displacement sensor

SLS095 is designed to provide maximum performance benefits within an extremely compact body diameter of 9.5mm, with stroke lengths from 10 to 100mm. The miniature size of this sensor makes it ideal for applications in robotics, animatronics, medical equipment and motorsport data acquisition.

PERFORMANCE

Electrical stroke E	mm	10	20	30	40	50	75	100	
Resistance ±10%	$\mathbf{k}\Omega$	0.4 [†]	8.0	1.2	1.6	2.0	3.0	4.0	†±15% for SLS 095/10
Independent linearity	±%	0.5	0.35	0.25	0.25	0.25	0.15	0.15	
Power dissipation at 20°C	W	0.2	0.4	0.6	8.0	1.0	1.5	2.0	
Applied voltage maximum	Vdc	8.9	17.9	26	40	44	67	74	
Resolution		Virtua	lly infini	ite					
Hysteresis (repeatability)		Less th	nan 0.0	1mm					
Operational temperature	°C	-30 to	+100						
Output smoothness		To MII	R-390	23 grad	de C 0.1	1%			
Insulation resistance		Great	er than	100MΩ	at 500)Vdc			
Operating mode		Voltag	je divide	er only	- see Ci	rcuit Re	commer	ndation	below
Wiper circuit impedance		Minim	num of 1	100 x tr	ack resi	stance	or 0.5M	Ω (whic	chever is greater)
Operating force maximum									
sealed	gf	300 ir	n horizo	ntal pla	ne				
unsealed	gf	100 ir	n horizo	ntal pla	ne				
Life at 250mm per second		Typica	Ily grea	iter thar	100 m	nillion o	peration	s (50 x	10^{6} cycles) at 25mm stroke length
Dither life		200 n	nillion o	peratio	ns (100	x 10 ⁶ c	ycles) at	±0.5n	nm, 60Hz
Sealing		IP50 s	standard	d - IP66	see op	tions			
Shaft seal life		20 mi	llion op	eration	s (10 x	10° cycl	es)		
Shaft velocity maximum	m/s	2.5							
Vibration		RTCA	160D 1	10Hz to	2kHz (r	andom	@ 4.1	2g (rms	s) - all axes
Shock		40g 6	mS half	f sine					

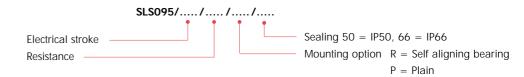
CIRCUIT RECOMMENDATION

Hybrid track potentiometers feature a high wiper contact resistance, therefore operational checks should be carried out only in the voltage divider mode. Hybrid track potentiometers should be used only as voltage dividers, with a minimum wiper circuit impedance of 100 x track resistance or $0.5M\Omega$ (whichever is greater). Operation with wiper circuits of lower impedance will degrade the output smoothness and affect the linearity.

OPTIONS

IP 66 sealing Mounting

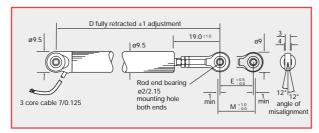
ACCESSORIES

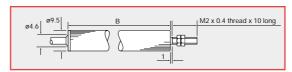

AVAILABILITY

ORDERING CODES

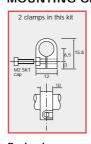
Designed to accept integral shaft seal to give IP66 rating

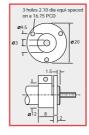
Can be supplied with self aligning bearings or a plain body for use with body clamps or flange mounting kit.


Mounting kits Body clamp kit - SA200841 Flange kit - SA200842


DIMENSIONS AND MOUNTING OPTIONS

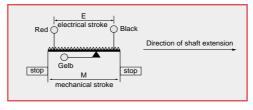
Note: drawings not to scale


SELF ALIGNING BEARING MOUNTING



PLAIN BODY MOUNTING

MOUNTING OPTIONS


Body clamp SA200841

Flange mounting SA200842

Electrical stroke E	mm	10	20	30	40	50	75	100
Mechanical stroke M	mm	12.5	22.5	32.5	42.5	52.5	77.5	102.5
Body length B	mm	45.5	55.5	65.5	75.5	85.5	110.5	135.5
Between centres D		70	80	90	100	110	135	160
Weight approximate								
(mounting option R)	g	11	13	14.5	16	17.5	21.5	25.5

ELECTRICAL CONNECTIONS

3 core cable: PUR sheathed 0.3m long with PTFE insulated 7/0.125 cores.

SLS130 linear displacement sensor

The SLS130 range is designed to provide performance benefits within a compact, lightweight package in stroke lengths from 25 to 200mm.

With a choice of mounting options and accessories, this sensor is ideally suited to a wide range of industrial applications.

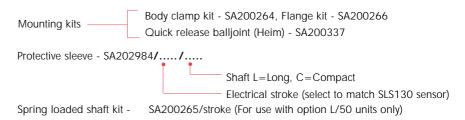
PERFORMANCE

Electrical stroke E	mm	25	50	75	100	125	150	175	200				
Resistance ±10%	$\mathbf{k}\Omega$	1	2	3	4	5	6	7	8				
Independent linearity													
guaranteed	±%	0.25	0.25	0.15	0.15	0.15	0.15	0.15	0.15				
typical	±%	0.15	0.15	0.15	0.10	0.10	0.07	0.07	0.07				
Power dissipation at 20°C	W	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0				
Applied voltage maximum	Vdc	22	44	67	74	74	74	74	74				
Electrical output		Minim	um of (0.5% to	99.5%	applied	volts						
Resolution		Virtua	lly infini	ite									
Hysteresis (repeatability)		Less th	Less than 0.01mm										
Operational temperature	°C	-30 to	+100	(tested	to +130	0 for 12	2 hours o	duration	n)				
Output smoothness		To MIL	-R-390	23 grad	de C 0.1	1%							
Insulation resistance		Great	er than	100ΜΩ	at 500)Vdc							
Operating mode		Voltag	e divide	er only -	see Ci	rcuit Re	commer	ndation	below				
Wiper circuit impedance		Minim	um of 1	100 x tr	ack resi	stance (or 0.5M	Ω (whic	hever is greater)				
Operating force maximum													
sealed	gf	500 ir	n horizo	ntal pla	ine								
unsealed	gf	250 ir	n horizo	ntal pla	ine								
Life at 250mm per second		Typica	lly grea	ter than	100 m	nillion o	peration	s (50 x	10 ⁶ cycles) at 25mm stroke length				
Dither life		200 m	nillion o	peratio	ns (100	x 10 ⁶ c	ycles) at	±0.5m	nm, 60Hz				
Sealing		IP50 s	tandard	d - IP66	see op	tions							
Shaft seal life		20 mi	llion op	erations	s (10 x	10° cycl	es) - rep	laceabl	le				
Shaft velocity maximum	m/s	10											
Vibration		RTCA	160D 1	OHz to	2kHz (r	andom	012.6	g (rms)	- all axes				
Shock		Less th	nan 0.0	4% outp	out char	nge @2	500g - a	all axes					

CIRCUIT RECOMMENDATION

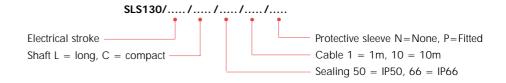
Hybrid track potentiometers feature a high wiper contact resistance, therefore operational checks should be carried out only in the voltage divider mode. Hybrid track potentiometers should be used only as voltage dividers, with a minimum wiper circuit impedance of 100 x track resistance or $0.5 M\Omega$ (whichever is greater). Operation with wiper circuits of lower impedance will degrade the output smoothness and affect the linearity.

OPTIONS


Compact shaft Integral shaft seal - IP 66 Extended cable length Mounting Protective sleeve Spring loaded shaft kit

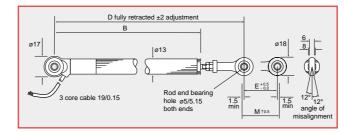
Compact shaft will reduce dimension D by 25mm Designed to accept integral shaft seal to give IP66 rating

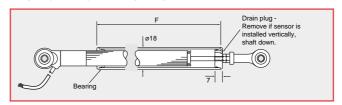
10m output cable can be specified


Body clamp, flange or quick release balljoint mounting kits can be supplied For all stroke lengths - self aligning bearings only. See ordering code

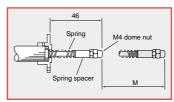
For stroke lengths 25 to 150mm with /L shaft option and /50 sealing option only

AVAILABILITY

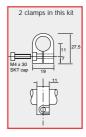

ACCESSORIES


DIMENSIONS AND MOUNTING OPTIONS

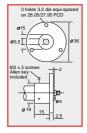
Note: drawings not to scale


SELF ALIGNING BEARING MOUNTING

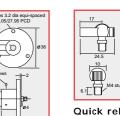
PROTECTIVE SLEEVE OPTION - P



SPRING RETURN OPTION †

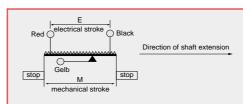


SA200265/stroke (25 to 150mm stroke lengths and /L/50 options only)


MOUNTING OPTIONS

Body clamp SA200264

Flange mounting SA200266



Quick release ball joint SA200337

Electrical stroke E	mm	25	50	75	100	125	150	175	200
Mechanical stroke M	mm	29	54	79	104	129	154	179	204
Body length B	mm	110.5	135.5	160.5	185.5	210.5	235.5	260.5	285.5
Between centres D									
standard sensor (L)	mm	173.6	198.6	223.6	248.6	273.6	298.6	323.6	348.6
compact shaft sensor (C)	mm	148.6	173.6	198.6	223.6	248.6	273.6	298.6	323.6
Sleeve length F									
standard sensor (L)	mm	102	127	152	177	202	227	252	277
compact shaft sensor (C)	mm	77	102	127	152	177	202	227	252
Weight approximate									
standard sensor (L)	g	64	71	78	85	92	99	106	113
compact shaft sensor (C)	g	60	67	74	81	88	95	102	109

ELECTRICAL CONNECTIONS

3 core cable: PUR sheathed 1m long with ETFE insulated 19/0.15 cores.

[†] Body clamp or flange mounting options should be ordered seperately

MLS 1 3 0 linear displacement sensor

The MLS130 sealed linear sensor is designed to provide superior performance within a compact, lightweight package in stroke lengths from 25 to 200mm. With a choice of mounting options, including metal rod end bearings, and an optional protective sleeve for extreme environmental conditions, this sensor is ideally suited to motorsport data acquisition applications on suspension and throttle position feedback, where high performance and reliability with competitive pricing and rapid despatch are vital. The sensor is supplied fully sealed to IP66, with an integrally moulded DR25 sheathed multicore cable.

PERFORMANCE

Electrical stroke E	mm	25	50	75	100	125	150	175	200				
Resistance ±10%	$\mathbf{k}\Omega$	1	2	3	4	5	6	7	8				
Independent linearity													
guaranteed	±%	0.25	0.25	0.15	0.15	0.15	0.15	0.15	0.15				
typical	±%	0.15	0.15	0.15	0.10	0.10	0.07	0.07	0.07				
Power dissipation at 20°C	W	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0				
Applied voltage maximum	Vdc	22	44	67	74	74	74	74	74				
Electrical output		Minim	num of (0.5% to	99.5%	applied	l volts						
Resolution		Virtua	lly infini	te									
Hysteresis (repeatability)		Less t	Less than 0.01mm										
Operational temperature	°C	-30 to	+100	(tested	to +13	0 for 12	2 hours	duration	า)				
Output smoothness		To MI	L-R-390	23 grad	de C 0.	1%							
Insulation resistance		Great	er than	100MΩ	at 500)Vdc							
Operating mode		Voltaç	ge divide	er only -	- see Ci	rcuit Re	commei	ndation	below				
Wiper circuit impedance		Minim	num of 1	100 x tr	ack resi	stance	or 0.5M	Ω (whic	hever is greater)				
Operating force maximum	gf	500 i	n horiza	ntal pla	ne								
Sealing		IP66											
Shaft seal life (replaceable)	20 m	Ilion op	erations	s (10 x	10º cycl	es)						
Sensor track life at 0.25m/s	S	Great	er than	100 mi	llion op	eration	s (50 x 1	10° cycl	es) at 25mm stroke length				
Sensor track dither life		200 r	nillion o	peratio	ns (100	x 10 ⁶ c	ycles) a	t ±0.5n	nm, 60Hz				
Shaft velocity maximum	m/s	10											
Vibration		RTCA	160D 1	OHz to	2kHz (r	andom) @ 12.	6g (rms	s) - all axes				
Shock		Less t	nan 0.0	4% outp	out char	nge @ :	2500g -	all axe	S				

CIRCUIT RECOMMENDATION

Hybrid track potentiometers feature a high wiper contact resistance, therefore operational checks should be carried out only in the voltage divider mode. Hybrid track potentiometers should be used only as voltage dividers, with a minimum wiper circuit impedance of 100 x track resistance or $0.5 \text{M}\Omega$ (whichever is greater). Operation with wiper circuits of lower impedance will degrade the output smoothness and affect the linearity.

OPTIONS

MountingMetal rod end bearings, quick release balljoints or plain M4 studProtective sleeveAvailable for all stroke lengths

ACCESSORIES

For maximum installation flexibility the following parts are available to purchase separately:

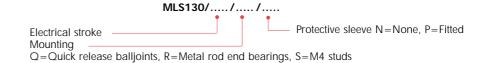
Metal rod end (rear) P202605

Metal rod end (shaft) P202604

Quick release balljoint assembly SA200337

Locknut, M4 X63 - 072 - 340

Protective sleeve assembly SA202984/stroke/C

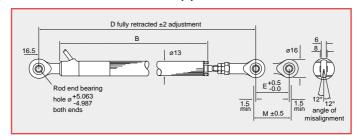

A suitable stud lock compound should be used to secure the rear rod end or balljoint assembly.

Use Loctite[™] activator 7471 and Loctite[™] 648 on metal rod end.

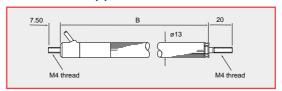
Use Loctite™ 382 on quick release balljoint.

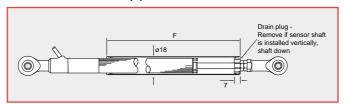
AVAILABILITY

ORDERING CODES


DIMENSIONS AND MOUNTING OPTIONS

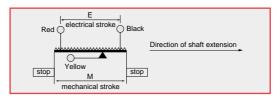
Note: drawings not to scale


QUICK RELEASE BALLJOINTS (Q)


METAL ROD END BEARINGS (R)

M4 STUD END (S)

PROTECTIVE SLEEVE (P)



Electrical stroke E	mm
Mechanical stroke M	mm
Body length B	mm
Between centres D	mm
Between centres G	mm
Sleeve length F	mm
Weight approximate	g

25	50	75	100	125	150	175	200
29	54	79	104	129	154	179	204
110.8	135.8	160.8	185.8	210.8	235.8	260.8	285.8
164.5	189.5	214.5	239.5	264.5	289.5	314.5	339.5
153.6	178.6	203.6	228.6	253.6	278.6	303.6	328.6
77	102	127	152	177	202	227	252
80	87	94	101	108	115	122	129

ELECTRICAL CONNECTIONS

3 core cable: DR25 sheathed 1m long with ETFT insulated 19/0.15 cores.

SLS190 linear displacement sensor

The SLS190 range is designed to provide maximum performance benefits within a compact package in stroke lengths from 25 to 350mm.

With a choice of mounting options and accessories, this sensor is ideally suited to a wide range of general purpose industrial applications, for medium stroke linear position sensing.

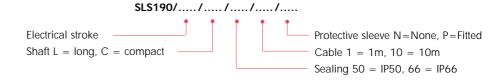
PERFORMANCE

Electrical stroke E	mm	25	50	75	100	125	150	175	200	225	250	275	300	325	350
Resistance ±10%	$\mathbf{k}\Omega$	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Independent linearity															
guaranteed	±%	0.25	0.25	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
typical	±%	0.15	0.15	0.15	0.10	0.10	0.07	0.07	0.07	0.07	0.05	0.05	0.05	0.05	0.05
Power dissipation at 20°C	W	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0
Applied voltage maximum	Vdc	22	44	67	74	74	74	74	74	74	74	74	74	74	74
Electrical output		Minim	num of	0.5% to	99.5%	applie	ed volts								
Resolution		Virtua	lly infin	ite											
Hysteresis (repeatability)		Less th	nan 0.0)1mm											
Operational temperature	°C	-30 to +100 (tested to +130 for 12 hours duration)													
Output smoothness		To MIL-R-39023 grade C 0.1%													
Insulation resistance		Great	er than	100M	Ω at 50	0Vdc									
Operating mode		Voltag	je divid	er only	- see C	Circuit F	Recomm	nendati	on belo	W					
Wiper circuit impedance		Minim	num of	100 x t	rack re	sistance	e or 0.5	MΩ (w	hicheve	er is gre	eater)				
Operating force maximum															
sealed	gf	500 ir	n horiza	ontal pl	ane										
unsealed	gf	250 ir	n horiza	ontal pl	ane										
Life at 250mm per second		Typica	Illy grea	ater tha	n 100	million	operati	ons (50	0 x 10 ⁶	cycles)	at 25n	nm stro	ke leng	th	
Dither life		200 n	nillion (operatio	ons (10	0 x 10 ⁶	cycles)	at ±0	.5mm,	60Hz					
Sealing		IP50 s	standar	d - IP66	see o	ptions									
Shaft seal life		20 mi	llion op	peration	ns (10 x	10° cy	cles) - ı	replace	able						
Shaft velocity maximum	m/s	10													
Vibration		RTCA	160D	10Hz to	2kHz	(rando	m) @ 1	2.6g (r	ms) - a	II axes					
Shock		Less th	nan 0.0)4% out	tput cha	ange @	25000	g - all a	axes						

CIRCUIT RECOMMENDATION

Hybrid track potentiometers feature a high wiper contact resistance, therefore operational checks should be carried out only in the voltage divider mode. Hybrid track potentiometers should be used only as voltage dividers, with a minimum wiper circuit impedance of 100 x track resistance or $0.5 \text{M}\Omega$ (whichever is greater). Operation with wiper circuits of lower impedance will degrade the output smoothness and affect the linearity.

OPTIONS

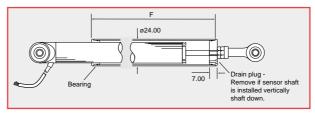

Compact shaft will reduce dimension D by 25mm Compact shaft Integral shaft seal - IP 66 Designed to accept integral shaft seal to give IP66 rating Extended cable length 10m output cable can be specified Mounting Body clamp or flange mounting kits can be supplied Protective sleeve For all stroke lengths - self aligning bearings only. See ordering code

ACCESSORIES

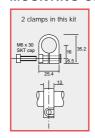
Body clamp kit - SA59019 Mounting kits -Flange kit - SA59020 Protective sleeve - SA202986/..../.... Shaft L = long, C = compact Electrical stroke (select to match SLS190 sensor)

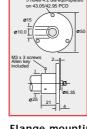
AVAILABILITY

ORDERING CODES


DIMENSIONS AND MOUNTING OPTIONS

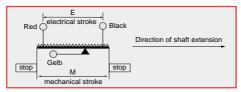
Note: drawings not to scale


SELF ALIGNING BEARING MOUNTING



PROTECTIVE SLEEVE OPTION - P

MOUNTING OPTIONS


Body clamp SA59019

Flange mounting SA59020

Electrical stroke E	mm	25	50	75	100	125	150	175	200	225	250	275	300	325	350
Mechanical stroke M	mm	29	54	79	104	129	154	179	204	229	254	279	304	329	354
Body length B	mm	110.5	135.5	160.5	210.5	235.5	260.5	285.5	310.5	333.5	360.5	385.5	435.5	460.5	485.5
Between centres D															
standard sensor (L)	mm	173.6	198.6	223.6	273.6	298.6	323.6	348.6	373.6	398.6	423.6	448.6	498.6	523.6	548.6
compact shaft sensor (C)) mm	148.6	173.6	198.6	248.6	273.6	298.6	323.6	348.6	373.6	398.6	423.6	473.6	498.6	523.6
Sleeve length F															
standard sensor (L)	mm	100	125	150	200	225	250	275	300	325	350	375	425	450	475
compact shaft sensor (C)) mm	75	100	125	175	200	225	250	275	300	325	350	400	425	450
Weight approximate															
standard sensor (L)	g	109	126	144	161	179	196	214	231	249	266	284	301	319	336
compact shaft sensor (C)) g	103	120	138	155	173	190	208	225	246	260	278	295	316	330

ELECTRICAL CONNECTIONS

3 core cable: PUR sheathed 1m long with ETFE insulated 19/0.15 cores.

SLS220 linear displacement sensor

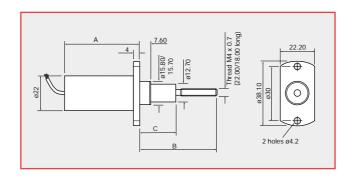
SLS220 linear displacement sensors have a 10mm or 20mm stroke range with a spring loaded operation and a mounting flange to allow easy installation. Contained within a high strength Nylatron* housing, this provides good chemical resistance and low weight. The internal potentiometer assembly is protected to IP66. Suited to OEM and process monitoring applications, this new sensor replaces Penny+Giles HLP220 model.

PERFORMANCE

mm	10	20
$\mathbf{k}\Omega$	$0.4\ \pm 15\%$	$0.8 \pm 10\%$
±%	0.5	0.35
W	0.2	0.4
Vdc	8.9	17.9
	Virtually infin	ite
	Less than 0.0	01mm
°C	-30 to +100	
	To MIL-R-390	023 grade C 0.1%
	Greater than	100M Ω at 500Vdc
	Voltage divid	er only - see Circuit Recommendation below
	Minimum of	100 x track resistance or $0.5M\Omega$ (whichever is greater)
kgf	4.0	
	Typically grea	ater than 20 million operations (10 x 10 ⁶ cycles)
	Internally sea	aled to IP66 (spring loaded plunger is unsealed, so care must be taken when
	selecting for	environments which have a risk of particle contamination)
m/s	2.5	
	kΩ ±% W Vdc °C	kΩ ±% 0.5 W 0.2 Vdc 8.9 Virtually infin Less than 0.0 °C -30 to +100 To MIL-R-390 Greater than Voltage divid Minimum of kgf 4.0 Typically great Internally seat selecting for

CIRCUIT RECOMMENDATION Hybrid track potentiometers feature a high wiper contact resistance, therefore operational checks should be carried out only in the voltage divider mode. Hybrid track potentiometers should be used only as voltage dividers, with a minimum wiper circuit impedance of 100 x track resistance or $0.5M\Omega$ (whichever is greater). Operation with wiper circuits of lower impedance will degrade the output smoothness and affect the linearity.

AVAILABILITY


All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{$

ORDERING CODES

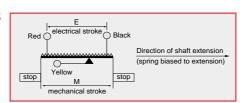
	SLS220)//.		
		•	•	
Electrical stroke				Resistance

DIMENSIONS

Note: drawings not to scale

Electrical stroke E mm 10 20 Mechanical stroke M 12.5 22.5 mm Body length A 44.4 54.4 mm Shaft extended - B mm 43 53 Shaft extended - C 20 30 mm Weight approximate 45 50 g

Note: Nominal shaft position is fully extended (spring loaded)


MATERIALS

Body Nylatron® MC901 (blue)

Shaft Stainless steel

ELECTRICAL CONNECTIONS

3 core cable: PUR sheathed 0.3m long with PTFE insulated 7/0.125 cores.

SLS320 linear displacement sensor

400

450

500

550

The SLS320 range is designed to provide maximum performance benefits within a body diameter of 32mm, with stroke lengths from 250 to 1600mm. With a choice of mounting options and accessories, this sensor is ideally suited to a wide range of heavier duty industrial applications, for medium to long stroke linear position sensing.

600

650

700

750

800

900

850

PERFORMANCE Electrical stroke E

LICOTICAL SHORE L			000	000	.00	.00	000	000	000	000	, 00	, 00	000	000	,00
Resistance ±10%	$\mathbf{k}\Omega$	10	12	14	16	18	20	22	24	26	28	30	32	34	36
Power dissipation at 20°C	W	5.0	6.0	7.0	8.0	9.0	10	11	12	13	14	15	16	17	18
Electrical stroke E	mm	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	1550	1600
Resistance ±10%	$\mathbf{k}\Omega$	38	40	42	44	46	48	50	52	54	56	58	60	62	64
Power dissipation at 20°C	W	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Independent linearity															
guaranteed	±%	0.15													
typical	±%	0.05													
Applied voltage - maximum	n Vdc	74													
Electrical output		Minimum of 0.5% to 99.5% applied volts													
Resolution		Virtua	lly infin	ite											
Hysteresis (repeatability)	mm	Less t	han 0.0)1											
Operational temperature	°C	-30 to	-30 to +100												
Output smoothness		To MI	L-R-390	23 gra	de C 0	.1%									
Insulation resistance		Great	er than	100Mg	2 at 50	OVdc									
Operating mode		Voltaç	ge divid	er only	- see C	Circuit R	ecomm	nendatio	on belo	W					
Wiper circuit impedance		Minim	num of	100 x	track re	esistanc	e or 0.	5MΩ (v	vhichev	er is gr	eater)				
Operating force - maximum	n														
sealed	gf	2000	in horiz	zontal p	olane (b	reak-o	ut force	50000	gf)						
unsealed	gf	1500	in horiz	zontal p	olane (b	reak-o	ut force	20000	gf)						
Life at 250mm per second		Typica	ally in ea	xcess of	100 m	nillion c	peratio	ns (50	x 10 ⁶ c	ycles) a	at 25mr	n stroke	e length	ı	
Dither life		200 r	nillion o	peratio	ns (100	O x 106	cycles)	at ± 0 .	5mm,	60Hz					
Sealing		IP50 s	standar	d - IP66	see o	otions									

250

mm

300

350

CIRCUIT RECOMMENDATION

Shaft velocity - maximum

Hybrid track potentiometers feature a high wiper contact resistance, therefore operational checks should be carried out only in the voltage divider mode. Hybrid track potentiometers should be used only as voltage dividers, with a minimum wiper circuit impedance of 100 x track resistance or $0.5M\Omega$ (whichever is greater). Operation with wiper circuits of lower impedance will degrade the output smoothness and affect the linearity.

OPTIONS

Shaft seal life

Compact shaft Integral shaft seal - IP 66 Cabled socket Mountina Protective sleeve

10

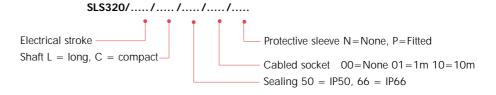
m/s

Compact shaft will reduce dimension D by 50mm Designed to accept integral shaft seal to give IP66 rating

20 million operations (10 x 106 cycles) - replaceable

1m or 10m cabled socket assemblies available Body clamp or flange mounting kits can be supplied

For all stroke lengths - self aligning bearings only. See ordering code


ACCESSORIES

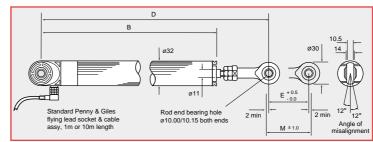
Body clamp kit - SA59661 Mounting kits Flange kit - SA59660

Protective sleeve - SA202988/..../....

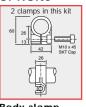
Shaft L = long, C = compact

Electrical stroke (select to match SLS320 sensor) Not available as a spare part for 1150 to 1600mm strokes

DIMENSIONS AND MOUNTING OPTIONS

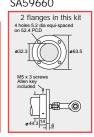

Note: drawings not to scale

Flactrical stroke F

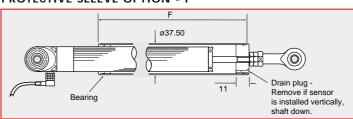

Mounting recommendations

For units 1150 to 1600mm stroke, we recommend the use of body clamp or flange mounting kits to support the sensor when horizontally mounted. Alternatively, use the protective sleeve kit with the self aligning bearing mountings to provide increased rigidity.

SELF ALIGNING BEARING MOUNTING



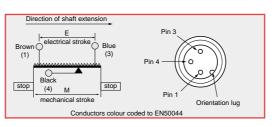
MOUNTING OPTIONS



Body clamp SA59661

Flange mounting SA59660

PROTECTIVE SLEEVE OPTION - P


Electrical stroke E	mm
Mechanical stroke M	mm
Body length B	mm
Between centres D	
standard sensor (L)	mm
compact shaft sensor (C)	mm
Sleeve length F	
standard sensor (L)	mm
compact shaft sensor (C)	mm
Weight approximate (no slee	eve)
standard sensor (L)	g
compact shaft sensor (C)	g
Floatrical strake F	mm
Electrical stroke E	mm
Electrical stroke E Mechanical stroke M	mm mm
Mechanical stroke M	mm
Mechanical stroke M Body length B	mm
Mechanical stroke M Body length B Between centres D	mm mm
Mechanical stroke M Body length B Between centres D standard sensor (L)	mm mm
Mechanical stroke M Body length B Between centres D standard sensor (L) compact shaft sensor (C)	mm mm
Mechanical stroke M Body length B Between centres D standard sensor (L) compact shaft sensor (C) Sleeve length F	mm mm mm mm
Mechanical stroke M Body length B Between centres D standard sensor (L) compact shaft sensor (C) Sleeve length F standard sensor (L)	mm mm mm mm
Mechanical stroke M Body length B Between centres D standard sensor (L) compact shaft sensor (C) Sleeve length F standard sensor (L) compact shaft sensor (C)	mm mm mm mm

250 255 366	300 305 416	350 355 466	400 405 516	450 455 601	500 505 651	550 555 701	600 605 751	650 655 801	700 705 851	750 755 901	800 805 986	850 855 1036	900 905 1086
480 430	530 480	580 530	630 580	710 660	760 710	810 760	860 810	910 860	960 910	1010 960	1095 1045	1145 1095	1195 1145
372 322	422 372	472 422	522 472	607 557	657 607	707 657	757 707	807 757	857 807	907 857	992 942	1042 992	1092 1042
590 555	673 638	756 721	839 804	922 887	1005 970	1088 1053	1171 1136	1254 1219	1337 1302	1420 1385	1503 1468	1586 1551	1669 1634
950 955	1000 1005		1100 1105	1150 1155		1250 1255						1550 1555	1600 1605
	1005		1105	1155	1205	1255		1355					
955	1005	1055	1105	1155 1371 1480	1205 1421 1530	1255	1305	1355	1405	1455	1505	1555	1605
955 1136 1245	1005 1186 1295 1245 1192	1055 1236 1345	1105 1286 1395 1345 1292	1155 1371 1480 1430 1377	1205 1421 1530 1480 1427	1255 1471 1580	1305 1521 1630 1580 1527	1355 1571 1680	1405 1621 1730	1455 1671 1780	1505 1721 1830	1555 1771 1880	1605 1821 1930

ELECTRICAL CONNECTIONS

Right angled, cabled socket

E series M12 to IEC 60947-5-2 PUR jacket. Conforms to DIN/VDE 0660 part 208A2

Cabled Socket

1 metre long No. x61-169-001 10 metres long No. x61-169-010

SPECIALISED DESIGNS

We have considerable experience in solving specific application problems by developing our standard designs to suit individual requirements. Custom-designed solutions are also provided where standard equipment does not fully meet our customer's needs.

SLS320 for heavy duty-cycle dynamic applications

A number of specialist applications have demanded an enhanced operating life beyond that capable from the standard SLS320 sealed linear sensor. To meet this requirement, we have developed a special version of the SLS320, which provides optimum lubrication for the track and sliding mechanism for increased operating life.

Typically the sensors are mounted parallel to actuators fitted to hydraulic motion bases operating leisure ride cabins at amusement parks around the world. Typically the motion bases run a three minute cycle time for up to 12 hours per day. This sensor is ideally suited to similar applications subject to heavy duty dynamic movements.

SPECIFICATION SUMMARY

Refer to page 14 and 15 for full performance specification and dimensions

Electrical stroke E mm 150 to 1600mm only

Sealing IP66 or IP50

Shaft seal life 20 million operations (10 x 10⁶) - replaceable

Shaft velocity - maximum m/s 10

OPTIONS

Compact shaft Cabled socket Mounting

Protective sleeve

Compact shaft will reduce dimension D (page 15) by 50mm

1m or 10m cabled socket assemblies available

Self aligning rod ends standard. Body clamp and flange kits available For 250 to 1600mm stroke lengths - self aligning bearings only.

ACCESSORIES

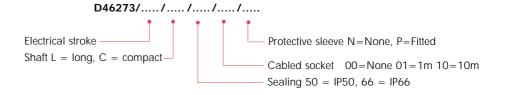
Mounting kits Body clamp kit - SA59661 Flange kit - SA59660

Protective sleeve - SA202988/..../....

Shaft L = long, C = compact

Electrical stroke (select to match SLS320 sensor)

Not available as a spare part for 1150 to 1600mm strokes

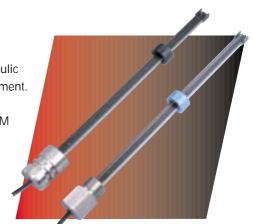

Clamp sleeve (to allow SLS320 to replace Penny+Giles HLP350

in existing installations) - P200863 (2 per sensor)

AVAILABILITY All standard configurations can be supplied rapidly from the factory - ch

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

ORDERING CODES



IN-CYLINDER LINEAR POSITION SENSORS

ICS100 In-Cylinder Sensors

Suitable for actuator strokes up to 1600mm

A range of In-Cylinder linear position sensors designed for integration into hydraulic and pneumatic actuators where the sensor is fitted inside the pressurised environment. Using the proven benefits of Hybrid Track Technology and including a number of innovative design features, the ICS100 range is ideally suited to high volume OEM actuator manufacturers, where design engineers can specify an affordable alternative for applications where non-contacting technologies may prove too expensive.

SPECIFICATION SUMMARY

Ask for our ICS100 In-Cylinder Sensors brochure for full details and designers guide. It can also be downloaded from our website at www.pennyandgiles.com

Electrical length E mm 25 to 200 in 5mm increments

210 to 1100 in 10mm increments (Up to 1600mm can be specified. See options)

Independent linearity ±% 0.25 for 25 to 70mm lengths

0.15 for 75 to 1600mm lengths

Resolution Virtually infinite

Hysteresis (repeatability) Less than 0.01mm

Operational temperature °C -30 to +100

Output smoothness To MIL-R-39023 grade C 0.1%

Life Typically greater than 100 million operations (50 x 10⁶ cycles) at 25mm stroke length

Dither life 200 million operations (100 x 10⁶ cycles) at ±0.5mm 60Hz

Slider velocity - maximum m/s 10 in pneumatic applications

4 in hydraulic applications (ISO Vg 32 mineral oil)

Pressure - working Bar 500 maximum

burst Bar >700

pulsed Bar 0 to 500 in 1 second (tested to 25,000 cycles)

Working fluid Tested for mineral oils only. Not recommended for water based fluids

OPTIONS

Electrical lengthLength from 1110mm up to 1600mm can also be supplied in 10mm increments.

Please discuss your application with our sales team before ordering.

Mounting Internal or external flange styles can be specified

Cylinder environment Hydraulic (H) or Pneumatic (P) versions can be specified

Extended cable length 1m or 10m output cable can be specified

AVAILABILITY

All standard configurations can be supplied rapidly from the factory - check with your local

supplier for more details

SPRING RETURN LINEAR DISPLACEMENT SENSOR

HLP190 Linear Potentiometers

The HLP190 range of hybrid linear potentiometers provides the facility for single or dual electrical output with a body diameter of only 19mm. Stroke lengths are from 25mm to 150mm, with a choice of body clamp (BS) or flange (FS) mounting. This model is supplied with a spring loaded shaft, biased to the fully extended position. Suited to a wide range of industrial applications for medium stroke length requirements - especially structural monitoring data acquisition.

PERFORMANCE

Electrical stroke E	mm	25	50	75	100	125	150
Resistance ±10%	$\mathbf{k}\Omega$	1	2	3	4	5	6
Independent linearity	±%	0.3	0.3	0.2	0.2	0.2	0.2
Power dissipation at 20°C	w	0.5	1.0	1.5	2.0	2.5	3.0
Applied voltage maximum	Vdc	22	44	67	74	74	74

Electrical output Single or dual – minimum of 0.5% to 99.5% applied volts

Resolution Virtually infinite Hysteresis (repeatability) Less than 0.01mm

Phasing between elements 0.5mm total in retracted position (multi output units)

Operational temperature °C -30 to +85

Output smoothness To MIL-R-39023 grade C 0.1% Insulation resistance Greater than $100M\Omega$ at 500Vdc

m/s

Operating mode Voltage divider only - see Circuit Recommendation below

Wiper circuit impedance Minimum of 100 x track resistance or $0.5M\Omega$ (whichever is greater)

550 600 Operating force maximum gf 450 500 525

Life at 250mm per second Typically greater than 100 million operations (50 x 10⁶ cycles) at 25mm stroke length

Shaft seal No seal fitted due to spring loded probe action

CIRCUIT RECOMMENDATION

Shaft velocity maximum

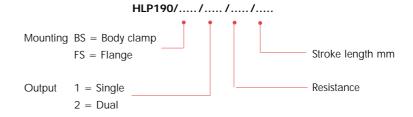
Hybrid track potentiometers feature a high wiper contact resistance, therefore operational checks should be carried out only in the voltage divider mode. Hybrid track potentiometers should be used only as voltage dividers, with a minimum wiper circuit impedance of 100 x track resistance or $0.5M\Omega$ (whichever is greater). Operation with wiper circuits of lower impedance will degrade the output smoothness and affect the linearity.

OPTIONS

Stroke length

Mounting Body clamp (BS) or flange (FS)

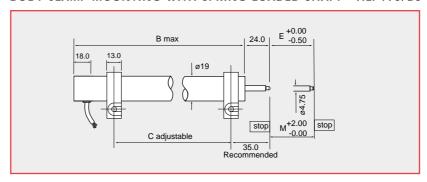
Outputs Single (1) or dual (2)

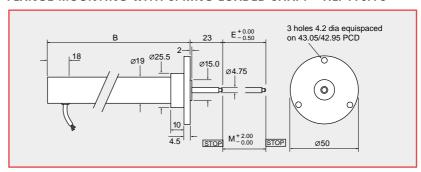

25 to 150mm in 25mm increments

Resistance Standard value is $1k\Omega$ per 25mm. Alternative values are possible – contact our sales team to

discuss your application

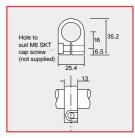
AVAILABILITY


ORDERING CODES


DIMENSIONS AND MOUNTING OPTIONS

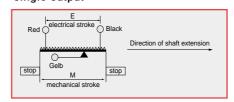
Note: drawings not to scale

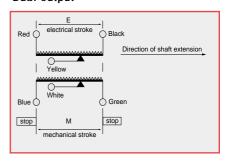
BODY CLAMP MOUNTING WITH SPRING LOADED SHAFT - HLP190/BS



FLANGE MOUNTING WITH SPRING LOADED SHAFT - HLP190/FS

Mechanical stroke M Body length B	mm	25	50	75	100	125	150
Type BS	mm	155	205	230	255	305	355
Type FS	mm	156	206	231	256	306	356
Clamp spacing \mathtt{C}^\dagger	mm	114	164	189	214	264	314
Weight approximate							
Type BS	g	115	135	150	180	195	210
Type FS	g	120	140	155	185	200	215


Body clamp detail


ELECTRICAL CONNECTIONS

3 core cable: PVC sheathed 0.5m long with ETFE insulated 19/0.15 cores (6 core cable for dual output version)

Single output

Dual output

[†] recommended position

www.pennyandgiles.com

Penny & Giles

Position sensors, joysticks and solenoids for commercial and industrial applications.

15 Airfield Road Christchurch Dorset BH23 3TG United Kingdom +44 (0) 1202 409409 +44 (0) 1202 409475 Fax sales@pennyandgiles.com

665 North Baldwin Park Boulevard City of Industry, CA 91746 USA +1 626 480 2150 +1 626 369 6318 Fax

Straussenlettenstr. 7b 85053 Ingolstadt, Germany +49 (0) 841 885567-0 +49 (0) 841 885567-67 Fax info@penny-giles.de

us.sales@pennyandgiles.com

3-1-A, Xiandai Square, No 333 Xingpu Rd, Suzhou Industrial Park, 215126 China +86 512 6287 3380 +86 512 6287 3390 Fax sales@pennyandgiles.com.cn

The information contained in this brochure on product applications should be used by customers for guidance only. Penny+Giles Controls Ltd makes no warranty or representation in respect of product fitness or suitability for any particular design application, environment, or otherwise, except as may subsequently be agreed in a contract for the sale and purchase of products. Customer's should therefore satisfy themselves of the actual performance requirements and subsequently the products suitability for any particular design application and the environment in which the product is to be used.

Continual research and development may require change to products and specification without prior notification. All trademarks acknowledged.

© Penny+Giles Controls Ltd 2012

Innovation In Motion

36 Nine Mile Point Industrial Estate Cwmfelinfach Gwent NP11 7HZ United Kingdom +44 (0) 1495 202000 +44 (0) 1495 202006 Fax sales@pennyandgiles.com

