Penny+Giles

A Curtiss-Wright Company

CO NTAC TLESS RO TARY PO SITIO N SENSO RS

IN NO VATION IN MOTION

The Penny+Giles contactless rotary position sensors have been specially developed to provide maximum performance under extremes of temperature, humidity, vibration, shock and immersion. Using the latest advances in 12bit Hall effect sensing technology, this expanded range of new generation sensors are factory programmed to provide the user with a wide range of previously unavailable options, including single or dual redundant outputs, clockwise or anticlockwise rotation and measurement angles from $0-20^{\circ}$ to $0-360^{\circ}$ in 1° increments.

This sensor range is ideally suited to operate in extremely hostile applications that are typical in motorsport, off-road specialist vehicles, military vehicles and heavy industrial machinery.

Contactless magnetic rotary sensor IC

The NRH/TPS/SRH series use a high performance, factory programmable 12 bit magnetic rotary sensor IC that includes integrated Hall elements and digital signal processing. The angular position information is provided by a magnet integrated with the sensor's shaft, or supplied separately. The sensor provides a pulse width modulated signal or an absolute analog voltage signal. Most models are designed to operate from either a 5 Vdc regulated or $9-30 \mathrm{Vdc}$ unregulated supply, with a high stability circuit and EMC immunity to $100 \mathrm{~V} / \mathrm{m}$.

Innovative, rugged designs superior protection

All models in our range have been designed to offer the best combination of materials and mounting styles that ensure survivability in the most rugged applications. We use sealing systems and cable connections that offer superior protection against the most hostile of operating conditions.

Impressive environmental capability

Designed with 21st century applications in mind most of our models can withstand operating temperatures from $-40^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}\left(+170^{\circ} \mathrm{C}\right.$ for 72 hours with our NRH and TPS models) and have been tested to withstand severe shock and vibration. All sensors have protection to at least IP68 rating, with some models offering protection to IP69K. With an EMC immunity of $100 \mathrm{~V} / \mathrm{m}$, these position sensors are ready for the harshest applications.

Superior performance

This range of sensors has an impressive performance specification and most can operate from a 5 Vdc regulated or $9-30 \mathrm{Vdc}$ supply. O utputs can be PWM or analog voltage (nominal $0.5-4.5 \mathrm{Vdc}$) over the measurement range, with clockwise or anticlockwise shaft rotation. A choice of 341 different electrical angles from 20° to 360° are possible. 12 bit resolution (0.025%) is available over the selected measuring range, with a nonlinearity better than $\pm 0.4 \%$ and temperature stability better than $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The sensor's analog output option has a very low output noise level of less than 1 mV rms.

World leading availability

All models have been 'designed for manufacture' which enables assembly in state-of-the-art manufacturing cells. This means that we can supply any of the configurations possible from the options offered, in a matter of days from ordering. This allows OEMs to reduce or eliminate their inventory, and call on Penny+Giles to supply 'on demand'.

Performance assured*

Penny+Giles product development process includes exhaustive qualification testing to ensure that performance specifications published in our product brochures and technical data sheets are backed by real-life test evidence. This is our assurance to you that our designs have been tested at these parameters.

* The qualification and suitability of these products in any customer specific application is the responsibility of the customer, unless otherwise agreed with Penny+Giles.

Selection Guide

Penny+Giles offers the widest choice of options to suit your unique application. We can also offer a custom design service if one of our standard models does not suit your requirements.

-Dual input/dual output version of NRH280DP -5Vdc operation only

- Dual input/dual output
- $28 \times 38 \mathrm{~mm}$ body with crush proof flange
- Sealed to IP68 •Integrated connector

- Single output
- 28 mm body with crush proof flange
- Three shaft styles •Sealed to IP68

SRH502P

- Dual output • 87.5 mm mounting flange
- Marine grade alloy housing
- Sealed to IP69K

SRH880P

NRH280DP
 dual output no contact rotary sensor

PERFORMANCE

ELECTRICAL

Measurement range		20 to 360 in 1° increments
Supply voltage	Vdc	9 to 30 (unregulated) and 5 ± 0.5 (regulated)
Over voltage protection	Vdc	Up to 40 (-40 to $+60^{\circ} \mathrm{C}$)
Maximum supply current	mA	<25
Reverse polarity protection		Yes
Short circuit protection		
Output to GND		Yes
Output to supply		In 5V regulated mode only
Power-on settlement time	S	<1
Resolution	\%	0.025 of measurement range (12 bit)
Non-linearity*	\%	$< \pm 0.4$
Temperature coefficient pp	/ ${ }^{\circ} \mathrm{C}$	$< \pm 30$ in 5 V supply mode; $< \pm 90$ in $9-30 \mathrm{~V}$ supply mode

*Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

Voltage output range		
9-30V supply	Vdc	Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range ($\pm 3 \%$)
5V supply	Vdc	Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range ($\pm 1 \%$)
Monotonic range	Vdc Vdc	0.25 (5\%) and 4.75 (95\%) nominal (A1) 0.05 (1\%) and 4.95 (99\%) nominal (A4)
Load resistance	Ω	10 k minimum (resistive to GND)
Output noise	mVrms	<1
Input/ output delay	mS	<2

PWM Output (order code Pn) - see output characteristics on page 31

PWM frequency	Hz	244 (P1); 500 (P2); or 1000 (P3) $\pm 20 \%$ over temperature range
PWM levels 9-30V supply	Vdc	0 and 5 nominal ($\pm 3 \%$)
5V supply	Vdc	0 and Vs ($\pm 1 \%$)
Duty cyde	\%	10 to 90 over measurement range
Monotonic range	\%	5 and 95 nominal
Load resistance	Ω	10 k minimum (resistive to GND)
Rise/fall time	$\boldsymbol{\mu S}$	<15

MECHANICAL
Mechanical angle ${ }^{\circ}$

Weight

360, continuous
3600
<55 (with bolt type magnet carrier)
Use $2 \times \mathrm{M} 4$ socket head cap screws and M4 washer - maximum tightening torque 2 Nm .
Bolt (B) or plug (P) type magnet holders are available for the customer to assemble to their own equipment. We also offer a magnet only (M) option for O EM's to integrate into their design.
When magnet ident mark is facing toward the sensor and cable exit, output is at mid travel. The sensor housing allows for $\pm 10^{\circ}$ adjustment via the mounting flange slots.

ENVIRONMENTAL
Protection class IP68 (to 2 m depth for 2 hours) and IP69K
Life
Dither life
Operational temperature ${ }^{\dagger}$

Storage temperature
${ }^{\circ} \mathrm{C}$
Vibration
Shock
EMC Immunity level
This product has no contacting parts.
Contactless - no degradation due to shaft dither
-40 to +140 (5 V supply) and $+170^{\circ} \mathrm{C}$ for 72 hours
-40 to +135.2 (9 V supply option) Derate upper temperature limit by $1.7^{\circ} \mathrm{C}$ for every 1 V increase in supply: e.g. -40 to $+100 @ 30 \mathrm{~V}$
-55 to +140
BS EN 60068-2-64:1995 Sec 8.4 (31.4gn rms) 20 to 2000 Hz Random
3 m drop onto concrete and 2500 g
BS EN $61000-4-3: 1999$, to $100 \mathrm{~V} / \mathrm{m}$, 80 MHz to 1 GHz and 1.4 GHz to 2.7 GHz (2004/108/EC)
${ }^{+}$See Maximum 0 perating Temperature - derating graph on page 30.
If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS
Measurement range (angle)
Output
Output direction
Magnet holder
Cable length
OEM options

Select from 20° to 360° in 1° increments (factory programmed) for each output channel Analog voltage (An) or PWM (Pn)
Both clockwise, both anticlockwise or one CW, one ACW
Bolt (B) or plug (P) types, or magnet only (M)
0.5

Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing $\mathrm{CH} 1 / \mathrm{CH} 2$; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

DIMENSIONS

Note: drawings not to scale

MAGNET HOLDER OPTIONS

ELECTRICAL ANGLE

MAGNET MISALIGNMENT

ELECTRICAL

CON NECTIONS

500 mm of 4 -core cable: FDR-25 sheathed, with 55 A spec (24AWG) cores

Cable colour	Description
Red	+ V Supply
Yellow	Output 1
White	Output 2
Black	OV Supply (GND)

O utput increases with CW or ACW rotation viewed on sensor face depending on selected order code

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow \& White) to GND (Black), but if the outputs (Yellow \& White) are connected to the supply this will result in device failure.

NRH285DRDUAL
 REDUNDANToutput

no contact rotary sensor - 5 Vdc opeation only

PERFORMANCE

ELECTRICAL

Measurement range	。	20 to 360 in 1° increments
Supply voltage	Vdc	5 ± 0.5 (regulated) to each independent sensor channel
Over voltage protection	Vdc	Up to $10\left(-40\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$
Maximum supply current	mA	<12.5 each independent supply (<25 total)
Reverse polarity protection		Yes
Short circuit protection		
Output to GND		Yes
Output to supply		Yes
Power-on settlement time	S	<1
Resolution	\%	0.025 of measurement range (12 bit)
Non-linearity*	\%	$< \pm 0.4$
Temperature coefficient pp	$\mathrm{m} /{ }^{\circ} \mathrm{C}$	$< \pm 30$

* Non-linearity is measured using the Least-Squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

Voltage output range	Vdc	Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range $(\pm 1 \%)$
Monotonic range	Vdc	$0.25(5 \%)$ and $4.75(95 \%)$ nominal (A1)
	Vdc	$0.05(1 \%)$ and $4.95(99 \%)$ nominal (A4)
Load resistance	Ω	10 k minimum (resistive to GND)
Output noise	$\mathbf{m V r m s}$	<1
Input/ output delay	$\mathbf{m S}$	<2

PWM Output (order code Pn) - see output characteristics on page 31

PWM frequency	$\mathbf{H z}$	$244(\mathrm{P} 1)$; $500(\mathrm{P} 2)$; or $1000(\mathrm{P} 3) \pm 20 \%$ over temperature range
PWM levels $\mathbf{5 V}$ supply	$\mathbf{V d c}$	0 and $\mathrm{Vs}(\pm 1 \%)$
Duty cyde	$\%$	10 to 90 over measurement range
Monotonic range	$\%$	5 and 95 nominal
Load resistance	Ω	10 k minimum (resistive to GND)
Rise/fall time	$\boldsymbol{\mu S}$	<15

MECHANICAL

Mechanical angle	\circ
Maximum rotational speed $\%$	
Weight	g

Weight
Mounting

Phasing

360, continuous
3600
<55 (with bolt type magnet carrier)
Use $2 \times M 4$ socket head cap screws and $M 4$ washer - maximum tightening torque 2 Nm . Bolt (B) or plug (P) type magnet holders are available for the customer to assemble to their own equipment. We also offer a magnet only (M) option for OEM's to integrate into their design.
When magnet ident mark is facing toward the sensor and cable exit, output is at mid travel. The sensor housing allows for $\pm 10^{\circ}$ adjustment via the mounting flange slots.

ENVIRONMENTAL

Protection class		IP68 (to 2m depth for 2 hours) and IP69K
Life		This product has no contacting parts.
Dither life		Contactless - no degradation due to shaft dither
Operational temperature ${ }^{\neq}$	${ }^{\circ} \mathrm{C}$	-40 to +140 and $+170^{\circ} \mathrm{C}$ for 72 hours
Storage temperature	${ }^{\circ} \mathrm{C}$	-55 to +140
Vibration		BS EN 60068-2-64:1995 Sec 8.4 (31.4gn rms) 20 to 2000Hz Random
Shock		3 m drop onto concrete and 2500 g
EMC Immunity level		BS EN $61000-4-3: 1999$, to $100 \mathrm{~V} / \mathrm{m}$, 80 MHz to 1 GHz and 1.4 GHz to $2.7 \mathrm{GHz}(2004 / 108 / \mathrm{EC})$

${ }^{\text {F }}$ If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS

Measurement range (angle) Output Output direction Magnet holder Cable length OEM options

AVAILABILITY

ORDERING CODES

Select from 20° to 360° in 1° increments (factory programmed) for each output channel Analog voltage (An) or PWM (Pn)
Both clockwise, both anticlockwise or one CW, one ACW
Bolt (B) or plug (P) types, or magnet only (M)
0.5

O utputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing $\mathrm{CH} 1 / \mathrm{CH}$; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

MAGNET HOLDER OPTIONS

ELECTRICAL ANGLE

MAGNET MISALIGNMENT

ELECTRICAL

CON NECTIONS
$2 \times 500 \mathrm{~mm}$ of 3 -core cable: FDR-25 sheathed, with 55 A spec (24AWG) cores

Cable colour*	Description
Red	+ V Supply
Yellow	O utput $1+2$
Black	OV Supply (GND)

O utput increases with CW or ACW rotation viewed on sensor face depending on selected order code
*Cables are identified on the mounting plate. $1=\mathrm{CH} 1,2=\mathrm{CH} 2$

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow) to GND (Black) and outputs to supply (Red) on NRH 285DR model only.

SRH220DR DUAL REDUNDAN Toutput contactless rotary sensor

PERFORMANCE

Output options	
ELECTRICAL	。
Measurement range	Vdc
Supply voltage	Vdc
Over voltage protection	mA
Maximum supply current	
Reverse polarity protection	
Short circuit protection	
Output to GND	
Output to supply	
Power-on settlement time	S
Resolution	$\%$
Non-linearity*	$\%$
Temperature coefficient	ppm/ ${ }^{\circ} \mathrm{C}$

A1 | A4 | P1 | P2 | P3

20 to 360 in 1° increments
9 to 30 (unregulated) and 5 ± 0.5 (regulated)
Up to $40\left(-40\right.$ to $+60^{\circ} \mathrm{C}$)
<12.5 each independent supply (<25 total) Yes

Yes
In 5V regulated mode only
<1
0.025 of measurement range (12 bit)
$< \pm 0.4$
$< \pm 30$ (5 V supply mode) $< \pm 110$ (9-30V supply mode)

A2
$0-10 \mathrm{Vdc}$

20 to 360 in 1° increments 13.5 to 30 (unregulated)

Up to $40\left(-40\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$
<30 (15 each channel)
Yes

Yes
Yes
<1
0.025 of measurement range (12 bit)
$< \pm 0.4$
$< \pm 125$
*Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Voltage Output (order code A1, A4) - see graph on page 31

Voltage output range		
9-30V supply	Vdc	Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range ($\pm 3 \%$)
5V supply	Vdc	Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range ($\pm 1 \%$)
Monotonic range	Vdc	0.25 (5\%) and 4.75 (95\%) nominal (A1)
	Vdc	0.05 (1\%) and 4.95 (99\%) nominal (A4)
Load resistance	Ω	10k minimum (resistive to GND)
Output noise	mVrms	<1
Input/ output delay	mS	<2

Analog Voltage Output (order code A2) - see typical graph on page 31

Voltage output range	Vdc	Absolute voltage, nominally 0.2 to $9.8 \quad(\pm 0.2 \mathrm{~V})$
Load resistance	Ω	10 k minimum (resistive to GND)
Output noise	$\mathbf{m V r m s}$	<1
Input/ output delay	$\mathbf{m s}$	3.5

PWM Output (order code Pn) - see output characteristics on page 31

PWM frequency	Hz	244 (P1); 500 (P2); or 1000 (P3) $\pm 20 \%$ over temperature range
PWM levels 9-30V supply	Vdc	0 and 5 nominal ($\pm 3 \%$)
5V supply	Vdc	0 and Vs ($\pm 1 \%$)
Duty cyde	\%	10 to 90 over measurement range
Monotonic range	\%	5 and 95 nominal
Load resistance	Ω	10k minimum (resistive to GND)
Rise/fall time	$\boldsymbol{\mu S}$	<15

MECHANICAL

Mechanical angle	-	360, continuous
Operating torque	g-cm	120
Maximum rotational speed	\%sec	3600
Weight	g	<51
Mounting		Use $2 \times \mathrm{M} 4$ socket head cap screws and M4 washer - maximum tightening torque 2 Nm
Phasing		When shaft drive detail is aligned as shown in Electrical Angle Diagram (page 12) output is at mid travel. The sensor housing allows for $\pm 10^{\circ}$ adjustment via the mounting flange slots.

ENVIRON MENTAL

Protection dass
 Life
 Dither life
 Operational temperature ${ }^{\dagger} \quad{ }^{\circ} \mathrm{C}$
 Output A1, A4, P1-3

Output A2
Storage temperature $\quad{ }^{\circ} \mathrm{C}$
Vibration
Shock
EMC Immunity level

IP68 - with AMP connector option (when recommended mating part is fully connected)
IP67 - with Deutsch connector option (when recommended mating part is fully connected)
20 million operations (10×10^{6} cycles) of $\pm 75^{\circ}$; sensing element life is essentially infinite (contactless)
Contactless - no degradation due to shaft dither
-40 to +140 (5 V supply)
-40 to +135.7 (9 V supply) Derate upper temperature limit by $1.7^{\circ} \mathrm{C}$ for every 1 V increase in supply:
e.g. -40 to $+100 @ 30 \mathrm{~V}$

40 to +115 (13.5 V supply) Derate upper temperature limit by $0.91^{\circ} \mathrm{C}$ for every 1 V increase in supply: e.g. -40 to $+100 @ 30 \mathrm{~V}$
-55 to +140
BS EN 60068-2-64:1995 Sec 8.4 (31.4 gn rms) 20 to 2000 Hz Random
3 m drop onto concrete and 2500 g
BS EN $61000-4-3: 1999$, to $100 \mathrm{~V} / \mathrm{m}$, 80 MHz to 1 GHz and 1.4 GHz to 2.7 GHz (2004/108/EC)
${ }^{\dagger}$ See Maximum O perating Temperature - Derating graph on page 30.
If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

O PTIONS

Measurement range (angle)
Output
Output direction
Shaft style
Connector
Operating lever
OEM options

AVAILABILITY

ORDERING CODES

Select from 20° to 360° in 1° increments (factory programmed) for each output channel Analog voltage (An) or PWM (Pn)
Both clockwise, both anticlockwise or one CW, one ACW
D section shaft
AMP Superseal 1.5 (A) or Deutsch DT04-6P 6-way integrated connectors
An operating lever kit can be supplied separately. See details on page 12
O utputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing $\mathrm{CH} / \mathrm{CH} 2$; faster input/output delay; extended analog range; and output mapping for potentiometer replacements. We can also supply mating connectors, subject to minimum quantities

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

Accessories (order separately)
Drive lever kit - SA207538 (includes lever and dowel pin)
Recommended Mating Connectors (can be supplied for OEM customers)
AMP Superseal 1.5 Plug - Part 282090-1 (plus $6 \times$ receptacle contacts to match your wire size)
Deutsch DT06 Plug - Part DT06-6S (plus $6 \times$ socket contacts to match your wire size)

SRH220DR

DIMENSIONS

Note: drawings not to scale

ELECTRICAL CON NECTIONS

Option A - AMP Superseal 1.5 connector Option B - Deutsch DT04-6P connector

Mating connectors are not supplied

ELECTRICAL ANGLE

LEVER OPTION

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with indefinite reverse polarity protection and short circuit protection between output to GND (Black), but if the outputs are connected to the supply this will result in device failure.

Pin No	Description
1	CH1 $-0 V$ Supply (GND)
2	CH1 + V supply
3	CH1 - O utput
4	CH2 -0 Supply (GND)
5	CH2 + V Supply
6	CH2 - Output

O utput increases with CW or ACW rotation viewed on shaft - depending on selected order code.

$S R-28$	$D \quad S \quad N \quad$
contactless rotary sensor	
PERFORMANCE	
ELECTRICAL	
Measurement range	20 to 360 in 1° increments
Supply voltage Vdc	9 to 30 (unregulated) and 5 ± 0.5 (regulated)
Over voltage protection Vdc	Up to $40\left(-40\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$
Maximum supply current mA	<12.5
Reverse polarity protection	Yes
Short circuit protection	
Output to GND	Yes
Output to supply	In 5V regulated mode only
Power-on settement time S	<1
Resolution \%	0.025 of measurement range (12 bit)
Non-linearity* \%	< ± 0.4
Temperature coefficient ppm/ ${ }^{\circ} \mathrm{C}$	< ± 50

*Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

Voltage output range

9-30V supply	Vdc	Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range ($\pm 3 \%$)
5V supply	Vdc	Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range ($\pm 1 \%$)
Monotonic range	Vdc	0.25 (5\%) and 4.75 (95\%) nominal (A1)
	Vdc	0.5 (1\%) and 4.95 (99\%) nominal (A4)
Load resistance	Ω	10k minimum (resistive to GND)
Output noise m	mVrms	<1
Input/ output delay	mS	<2
PWM Output (order code P) - See output characteristics on page 31		
PWM frequency	Hz	244 (P1); 500 (P2); or 1000 (P3) $\pm 20 \%$ over temperature range
PWM levels 9-30V supply	$y \mathrm{Vdc}$	0 and 5 nominal ($\pm 3 \%$)
5V supply	Vdc	0 and Vs ($\pm 1 \%$)
Duty cyde	\%	10 to 90 over measurement range
Monotonic range	\%	5 and 95 nominal
Load resistance	Ω	10k minimum (resistive to GND)
Rise/fall time	$\boldsymbol{\mu S}$	<15

MECHANICAL

Mechanical angle

360, continuous
Operating torque - maximum sealed shaft IP68 g-cm 120 unsealed shaft IP50 $\mathbf{g - c m} 100$
Shaft velocity maximum \%sec 3600
Weight g <35

Mounting
Use $2 \times \mathrm{M} 4$ socket head cap screws and M4 washer - maximum tightening torque 2 Nm Phasing

SRH280P

ENVIRONMENTAL

Protection dass

Life

Dither life

Operational temperature ${ }^{\dagger}{ }^{\circ} \mathrm{C}$

Storage temperature

Vibration

Shock
EMC Immunity level

IP68 (to 2 m depth for 1 hour) or IP50
20 million operations (10×10^{6} cycles) of ± 75 응
Sensing element life is essentially infinite (contactless); the SRH280P life figure refers to the operating shaft seal. Mechanical load (axial and radial) on the shaft should also be considered.
Contactless - no degradation due to shaft dither
-40 to +140 (5V supply)
-40 to +137 (9 V supply) Derate upper temperature limit by $0.57^{\circ} \mathrm{C}$ for every 1 V increase in supply:
e.g. -40 to $+125 @ 30 \mathrm{~V}$
-55 to +140
BS EN 60068-2-64:1995 Sec 8.4 (14 gn rms) 20 to 2000 Hz Random
3 m drop onto concrete
BS EN $61000-4-3: 1999$, to $100 \mathrm{~V} / \mathrm{m}$, 80 MHz to 1 GHz and 1.4 GHz to 2.7 GHz (2004/108/EC)
${ }^{+}$See Maximum O perating Temperature - Derating graph on page 30
If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

O PTIONS

Measurement range (angle) Output Output direction
Shaft style
Shaft sealing
Cable length
Custom housing
OEM options

Select from 20° to 360° in 1° increments (factory programmed) Analog voltage (An) or PWM (Pn)
Clockwise or Anticlockwise shaft rotation with increasing output D section, sprung shaft (S) or 2.4 mm blade shaft (H)
IP50 or IP68
$0.2,0.5$ or 2.0
Synchro mount style with ball race bearings - ask our technical sales team for details O utput can be programmed to provide: non linear law; switch output; clamp voltages; faster input/output delay; extended analog range; and output mapping for potentiometer replacements

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

SHAFT OPTIONS

ELECTRICAL

CON NECTIONS

200, 500 or 2000 mm of 3 -core cable: PUR sheathed, with PTFE insulated 19/0.15 cores

Cable colour	Description
Red	+V Supply
Yellow	Output
Black	OV Supply (GND)

O utput increases with CW or ACW rotation viewed on shaft - depending on selected order code

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between output (Yellow) to GND (Black), but if the output (Yellow) is connected to the supply it will result in device failure.

SRH280DP DUALontrut
 contactless rotary sensor

PERFORMANCE

ELECTRICAL

Measurement range	-	20 to 360 in 1° increments
Supply voltage	Vdc	9 to 30 (unregulated) and 5 ± 0.5 (regulated)
Over voltage protection	Vdc	Up to 40 (-40 to $+60^{\circ} \mathrm{C}$)
Maximum supply current	mA	<25
Reverse polarity protection		Yes
Short circuit protection		
Output to GND		Yes
Output to supply		In 5V regulated mode only
Power-on settlement time	S	<1
Resolution	\%	0.025 of measurement range (12 bit)
Non-linearity*	\%	$< \pm 0.4$
Temperature coefficient pp	m/ ${ }^{\circ} \mathrm{C}$	$< \pm 30$ in 5V supply mode; $< \pm 90$ in $9-30 \mathrm{~V}$ supply mode

* Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

Voltage output range		
9-30V supply	Vdc	Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range ($\pm 3 \%$) 5V supply
	Vdc	Ratiometric output voltage -10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range $(\pm 1 \%)$
Monotonic range	Vdc	$0.25(5 \%)$ and $4.75(95 \%)$ nominal (A1)
	Vdc	$0.05(1 \%)$ and $4.95(99 \%)$ nominal (A4)
Load resistance	Ω	10 k minimum (resistive to GND)
Output noise	$\mathbf{m V r m s}$	<1
Input/ output delay	$\mathbf{m s}$	<2

PWM Output (order code Pn) - see output characteristics on page 31

PWM frequency	Hz	244 (P1); 500 (P2); or 1000 (P3) $\pm 20 \%$ over temperature range
PWM levels 9-30V supply	Vdc	0 and 5 nominal ($\pm 3 \%$)
5V supply	Vdc	0 and Vs ($\pm 1 \%$)
Duty cycle	\%	10 to 90 over measurement range
Monotonic range	\%	5 and 95 nominal
Load resistance	Ω	10k minimum (resistive to GND)
Rise/fall time	$\boldsymbol{\mu S}$	<15

MECHANICAL

Mechanical angle

Operating torque - maximum sealed shaft IP68 g-cm

360, continuous unsealed shaft IP50 g-cm 100

120

Shaft velocity maximum \%sec 3600
Weight
g <35
Mounting
Phasing
Use $2 \times \mathrm{M} 4$ socket head cap screws and M4 washer - maximum tightening torque 2 Nm
When shaft flat (or shaft ident mark) is facing toward the cable exit, output is at mid travel. The sensor housing allows for $\pm 10^{\circ}$ adjustment via the mounting flange slots.

ENVIRONMENTAL
Protection dass IP68 (to 2 m depth for 1 hour) or IP50

Life

20 million operations (10×10^{6} cycles) of $\pm 75^{\circ}$
Sensing element life is essentially infinite (contactless); the SRH280DP life figure refers to the operating shaft seal. Mechanical load (axial and radial) on the shaft should also be considered.

Dither life

Operational temperature ${ }^{\dagger}{ }^{\circ} \mathrm{C}$

Storage temperature

Vibration
Shock
EMC Immunity level

Contactless - no degradation due to shaft dither
-40 to +140 (5 V supply)
-40 to +135.7 (9 V supply) Derate upper temperature limit by $1.7^{\circ} \mathrm{C}$ for every 1 V increase in supply: e.g. -40 to $+100 @ 30 \mathrm{~V}$
-55 to +140
BS EN 60068-2-64:1995 Sec 8.4 (31.4 gn rms) 20 to 2000 Hz Random
3 m drop onto concrete
BS EN $61000-4-3: 1999$, to $100 \mathrm{~V} / \mathrm{m}, 80 \mathrm{MHz}$ to 1 GHz and 1.4 GHz to $2.7 \mathrm{GHz}(2004 / 108 / \mathrm{EC})$
${ }^{+}$See Maximum O perating Temperature - derating graph on page 30.
If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS
Measurement range (angle)
Output
Output direction
Shaft style
Shaft sealing
Cable length
Custom housing
OEM options

Select from 20° to 360° in 1° increments (factory programmed) for each output channel Analog voltage (An) or PWM (Pn)
Both clockwise, both anticlockwise or one CW, one ACW
D section, sprung shaft (S) or 2.4 mm blade shaft (H)
IP50 or IP68
0.2 or 0.5

Synchro mount style with ball race bearings - ask our technical sales team for details O utputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing $\mathrm{CH} 1 / \mathrm{CH} 2$; faster input/ output delay; extended analog range; and output mapping for potentiometer replacements

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

DIMENSIONS

Note: drawings not to scale

ELECTRICAL

CO N N ECTIO N S

200 or 500 mm of 4 -core cable: FDR-25 sheathed, with 55A spec (24AWG) cores

SHAFT OPTIONS

Cable colour	Description
Red	+V Supply
Yellow	Output 1
White	Output 2
Black	OV Supply (GND)

O utput increases with CW or ACW rotation viewed on shaft - depending on selected order code.

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow \& White) to GND (Black), but if the outputs (Yellow \& White) are connected to the supply this will result in device failure.

TPS280DP DUALOUTPOT

 contactless throttle position/rotary sensor
PERFORMANCE

ELECTRICAL

Measurement range		20 to 360 in 1° increments
Supply voltage	Vdc	9 to 30 (unregulated) and 5 ± 0.5 (regulated)
Over voltage protection	Vdc	Up to 40 (-40 to $+60^{\circ} \mathrm{C}$)
Maximum supply current	mA	<25
Reverse polarity protection		Yes
Short circuit protection		
Output to GND		Yes
Output to supply		In 5V regulated mode only
Power-on settlement time	S	<1
Resolution	\%	0.025 of measurement range (12 bit)
Non-linearity*	\%	< ± 0.4
Temperature coefficient pp	m/ ${ }^{\circ} \mathrm{C}$	$< \pm 30$ in 5V supply mode; < ± 90 in $9-30 \mathrm{~V}$ supply mode

*Non-linearity is measured using the Least-Squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

Voltage output range		
9-30V supply	Vdc	Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range ($\pm 3 \%$)
5 V supply	Vdc	Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range ($\pm 1 \%$)
Monotonic range	Vdc	0.25 (5\%) and 4.75 (95\%) nominal (A1)
	Vdc	0.05 (1\%) and 4.95 (99\%) nominal (A4)
Load resistance	Ω	10k minimum (resistive to GND)
Output noise	mVrms	<1
Input/ output delay	mS	<2

PWM Output (order code Pn) - see output characteristics on page 31

PWM frequency	Hz	244 (P1); 500 (P2); or 1000 (P3) $\pm 20 \%$ over temperature range
PWM levels 9-30V supply	Vdc	0 and 5 nominal ($\pm 3 \%$)
5V supply	Vdc	0 and Vs ($\pm 1 \%$)
Duty cycle	\%	10 to 90 over measurement range
Monotonic range	\%	5 and 95 nominal
Load resistance	Ω	10 k minimum (resistive to GND)
Rise/fall time	$\boldsymbol{\mu S}$	<15

MECHANICAL
Mechanical angle

- 360, continuous

Operating torque g-cm
Maximum rotational speed \%se
Weight g
Mounting
Phasing

10
3600
<30
Use $2 \times \mathrm{M} 4$ socket head cap screws and M4 washer - maximum tightening torque 2 Nm When shaft drive detail is aligned as shown in Electrical Angle Diagram (page 21), output is at mid travel. The sensor housing allows for $\pm 10^{\circ}$ adjustment via the mounting flange slots.

ENVIRONMENTAL

Protection dass

Life
Dither life
Operational temperature ${ }^{\dagger} \quad{ }^{\circ} \mathrm{C}$

Storage temperature Vibration Shock EMC Immunity level

IP68 (to 2m depth for 1 hour) and IP69K
60 million operations (30×10^{6} cycles) of $\pm 75^{\circ}$; Sensing element life is essentially infinite (contactless) Contactless - no degradation due to shaft dither
-40 to +140 (5 V supply) and $+170^{\circ} \mathrm{C}$ for 72 hours
-40 to +135.7 (9 V supply option) Derate upper temperature limit by $1.7^{\circ} \mathrm{C}$ for every 1 V increase in supply: e.g. -40 to $+100 @ 30 \mathrm{~V}$
-55 to +140
BS EN 60068-2-64:1995 Sec 8.4 (31.4 gn rms) 20 to 2000 Hz Random
3 m drop onto concrete and 2500 g
BS EN $61000-4-3: 1999$, to $100 \mathrm{~V} / \mathrm{m}, 80 \mathrm{MHz}$ to 1 GHz and 1.4 GHz to 2.7 GHz (2004/108/EC)
${ }^{+}$See Maximum O perating Temperature - Derating graph on page 30 .
If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTION S
Measurement range (angle)
Output
Output direction
Cable length
Connector
OEM options

AVAILABILITY

Select from 20° to 360° in 1° increments (factory programmed) for each output channel Analog voltage (An) or PWM (Pn)
Both clockwise, both anticlockwise or one CW, one ACW
m $\quad 0.2$ or 0.5
Not fitted (C0) or Mini Sure Seal MSS4R fitted (C1)
O utputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing $\mathrm{CH} 1 / \mathrm{CH} 2$; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

Accessories (order all items separately)
Mating connector - X61-227-002 Mini Sure Seal MSS4P
X61-227-201 PIN contact (2off required)
X61-227-202 SO CKET contact (2off required)

DIMENSIONS

Note: drawings not to scale

ELECTRICAL

CONNECTIONS
Option CO-200 or 500 mm of 4-core cable: FDR-25 sheathed, with 55A spec (24AWG) cores

Option C1 - Mini sure seal MSS4R fitted to cable

ELECTRICAL ANGLE

RECOMMENDED MATING DRIVE

Cable colour	Description
Red	+V Supply
Black	OV Supply GND
Yellow	CH1 O utput
White	CH2 O utput

O utput increases with CW or ACW rotation viewed on shaft drive depending on selected order code

C1 Connector option

Pin $1=\mathrm{V}+$ Supply
Pin $3=\mathrm{CH} 1 \mathrm{O}$ utput
Pin $2=0 V$ Supply GND
Pin $4=\mathrm{CH} 2$ Output

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow \& White) to GND (Black), but if the outputs (Yellow \& White) are connected to the supply this will result in device failure.
SRH501P SIN G LEoutput and SRH502P DUALOUTPRT rugged contactless rotary sensors

PERFORMANCE

Output options

ELECTRICAL

Measurement range Supply voltage		20 to 360 in 1° increments
unregulated	Vdc	9 to 30
regulated	Vdc	5 ± 0.5
Over voltage protection	Vdc	Up to 40 (-40 to $\left.+60^{\circ} \mathrm{C}\right)$
Maximum supply current	mA	<25
Reverse polarity protection		Yes
Short circuit protection		
Output to GND		Yes
Output to supply		In 5V regulated mode only
Power-on settlement time	S	< 1
Resolution	\%	0.025 of measurement range (12 bit)
Non-linearity*	\%	$< \pm 0.4$
Temperature coefficient pp	$\mathrm{m} /{ }^{\circ} \mathrm{C}$	$< \pm 30$ in 5V supply mode $< \pm 90$ in $9-30 \mathrm{~V}$ supply mode

A2
$0-10 \mathrm{Vdc}$

A3
4-20mA

20 to 360 in 1° increments

13.5 to 30	9 to 30
No	No

Up to $40\left(-40\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$

<30	$<25+$ total output current
Yes	Yes

Yes	Yes
Yes	Yes
<1	<1

0.025 of measurement range (12 bit)
$< \pm 0.4< \pm 0.4$
$< \pm 50 \quad< \pm 200$ typical
N/A $< \pm 200$ maximum $^{* *}$
*Non-linearity is measured using the Least-Squares method on a computerised calibration system
**Temperature compensation possible by using graph shown on page 30

Analog Voltage Output - (order code A1, A4) see typical graph on page 31

Voltage output range		
9-30V supply	Vdc	Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range ($\pm 3 \%)$ 5V supply
	Vdc	Ratiometric output voltage -10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range ($\pm 1 \%)$
Monotonic range	Vdc	$0.25(5 \%)$ and $4.75(95 \%)$ nominal (A1)
	Vdc	$0.05(1 \%)$ and $4.95(99 \%)$ nominal (A4)
Load resistance	Ω	10 k minimum (resistive to GND)
Output noise	$\mathbf{m V r m s}$	<1
Input/ output delay	$\mathbf{m s}$	<2

Analog Voltage Output - (order code A2) see typical graph on page 31

Voltage output range	Vdc	Absolute voltage, nominally 0.2 to $9.8(\pm 0.2 \mathrm{~V})$
Load resistance	Ω	10 k minimum (resistive to GND)
Output noise	$\mathbf{m V r m s}$	<1
Input/ output delay	$\mathbf{m S}$	3.5

Analog Current Output - (order code A3) see typical graphon page 31
Current output range $\quad \mathbf{m A} \quad$ Absolute current, nominally 4 to 20 ($\pm 2 \%$ span)
Load resistance $\quad \Omega \quad 400$ maximum (resistive to GND)
Output noise $\quad \mu$ Arms $\quad<10$
Input/ output delay mS 3.75

PWM Output options (order code Pn) see output characteristics on page 31

PWM frequency	Hz	244 (P1); 500 (P2); or 1000 (P3) $\pm 20 \%$ over temperature range
PWM levels 9-30V supply	Vdc	0 and 5 nominal ($\pm 3 \%$)
5 V supply	Vdc	0 and Vs ($\pm 1 \%$)
Duty cyde	\%	10 to 90 over measurement range
Monotonic range	\%	5 and 95 nominal
Load resistance	Ω	10 k minimum (resistive to GND)
Rise/fall time	$\boldsymbol{\mu S}$	<20
MECHANICAL		
Mechanical angle	-	360, continuous
Operating torque - max	g-cm	1000
Shaft velocity maximum	$\% \mathrm{sec}$	3600
Weight	g	265 (without cable)
Mounting		Use $3 \times$ M6 threaded holes in front face or $3 \times$ M6 (or $1 / 4$ UNC) clearance holes through the flange - See dimensions for details
Phasing		When the shaft flat is facing towards the cable exit, sensor output is at mid electrical angle ($\pm 5^{\circ}$)

ENVIRONMENTAL

Protection dass

IP69K with cable codes Bxx and Sxx
IP68 or IP69K with cable code C01 when mating connectors (see page 26) are attached and fully engaged)

\section*{Life

 Dither life

 Dither life

 Shaft side load

 Shaft side load Operational temperature ${ }^{\dagger} \quad{ }^{\circ} \mathrm{C}$ Operational temperature ${ }^{\dagger} \quad{ }^{\circ} \mathrm{C}$ Output A1, A4, P1-3} Output A1, A4, P1-3

20 million operations (10×10^{6} cycles) of $\pm 75^{\circ}$ Sensing element life is essentially infinite (contactless), and the SRH501P/502P life figures refer to the operating shaft seal. Mechanical load (axial and radial) on the shaft should also be considered.
Contactless - no degradation due to shaft dither
2 Kg mounted on sensor shaft - tested 3 million cycles
-40 to +140 (5V supply)
-40 to +135.7 (9 V supply) Derate upper temperature limit by $1.7^{\circ} \mathrm{C}$ for every 1 V increase in
supply: e.g. -40 to $+100 @ 30 \mathrm{~V}$
Output A2
-40 to +115 (13.5 V supply) Derate upper temperature limit by $0.91^{\circ} \mathrm{C}$ for every 1 V increase in supply: e.g. -40 to $+100 @ 30 \mathrm{~V}$
Output A3

Storage temperature ${ }^{\circ} \mathrm{C}$

Vibration

Shock
EMC Immunity level

Salt spray

Humidity
-40 to $+120\left(9 \mathrm{~V}\right.$ supply) Derate upper temperature limit by $1.05^{\circ} \mathrm{C}$ for every 1 V increase in supply: e.g. -40 to +98 @ 30 V
-55 to +140
BS EN 60068-2-64:1995 Sec 8.4 (14 gn rms) 20 to 2000 Hz Random
3 m drop onto concrete and 2500 g - all axes
BS EN $61000-4-3: 1999$, to $100 \mathrm{~V} / \mathrm{m}, 80 \mathrm{MHz}$ to 1 GHz and 1.4 GHz to 2.7 GHz
($35 \mathrm{~V} / \mathrm{m} 1.4 \mathrm{GHz}$ to 2.7 GHz for output A3) (2004/108/EC)
BS EN 60068-2-52: 1996, Test Kb Severity 2 (48hr)
BS EN 60068-2-30: 2005, Severity Db ($55^{\circ} \mathrm{C}, 93 \% \mathrm{RH}$)
${ }^{+}$See Maximum O perating Temperature - Derating graphs on page 30.
If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

O PTIO N S

Measurement range (angle)

Output
coming soon in 2010

Output direction
 Electrical connections

Cabled sockets

Operating levers
OEM options

Select from 20° to 360° in 1° increments (factory programmed) for each output channel
Analog voltage (A1, A2, A4)
Analog current (A3)
PWM (Pn)
CAN bus outputs: J1939 (J1); CAN open (O 1)
Both clockwise, both anticlockwise or one CW, one ACW
No cable (A00, S00), 1m, 5m, 10m unscreened (Bxx) or screened (Sxx) cable or M12 receptacle (C01)
$1.5,2,5 \& 10 \mathrm{~m}$ mating cabled sockets can be ordered separately. See details on page 26 O perating levers 155 or 230 mm long can be ordered separately. See details on page 25 O utputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing $\mathrm{CH} 1 / \mathrm{CH} 2$; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.

SRH501P AND SRH502P

AVAILABILITY

ORDERING CODES

NOTE: When selecting output option A3 ($4-20 \mathrm{~mA}$), cable codes Sxx are the only cable codes allowable.

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

SINGLE OUTPUT SRH501P

```
SRH501P/
``` \(\qquad\)

Measurement range \(\quad=\) angle in \({ }^{\circ}\)
\begin{tabular}{ll}
O utput & A1 \(=\) Analog \(0.5-4.5 \mathrm{Vdc}\) \\
& A2 \(=\) Analog \(0-10 \mathrm{Vdc}\) \\
& A3 \(=\) Analog \(4-20 \mathrm{~mA}\) \\
A4 \(=\) Analog \(0.1-4.9 \mathrm{Vdc}\) \\
& P1 \(=\) PWM, 244 Hz \\
P2 \(=\) PWM, 500 Hz \\
& P3 \(=\) PWM, 1000 Hz
\end{tabular}

Direction \(\quad 1=\) Clockwise
\(2=\) Anticlockwise
Cable code \(\quad \mathrm{A} 00=\) No cable, gland fitting
SOO = No cable, screened cable gland (A3 output option - see note)
B01 \(=1 \mathrm{~m} 3\)-core unscreened cable, IP69K
B05 \(=5 \mathrm{~m} 3\)-core unscreened cable, IP69K
B10 \(=10 \mathrm{~m} 3\)-core unscreened cable, IP69K
S01= 1m 3-core screened cable, IP69K (A3 output options - see note)
S05 = 5 m 3 -core screened cable, IP69K
S10 \(=10 \mathrm{~m} 3\)-core screened cable, IP69K
C01 = M12 screw locking receptacle

DUAL OUTPUT SRH502P
\begin{tabular}{|c|c|}
\hline Measurement range & \(\mathrm{CH} 1=\) angle in \({ }^{\circ}\) \\
\hline \multirow[t]{8}{*}{Measurement range \({ }_{\text {O utput }}\)} & \(\mathrm{CH} 2=\) angle in \({ }^{\circ}\) \\
\hline & A1 \(=\) Analog \(0.5-4.5 \mathrm{Vdc}\) \\
\hline & \(\mathrm{A} 2=\) Analog \(0-10 \mathrm{Vdc}\) \\
\hline & A3 \(=\) Analog \(4-20 \mathrm{~mA}\) \\
\hline & A4 \(=\) Analog 0.1-4.9Vdc \\
\hline & P1 = PWM, 244 Hz \\
\hline & P2 \(=\) PWM, 500 Hz \\
\hline & P3 \(=\) PWM, 1000 Hz \\
\hline Direction & 3 = Both clockwise \\
\hline & 4 = Both anticlockwise \\
\hline & \(5=\mathrm{CH} 1 \mathrm{CW}\); CH2 ACW \\
\hline \multirow[t]{9}{*}{Cable code} & A00 \(=\) No cable, gland fitting \\
\hline & S00 \(=\) No cable, screened cable gland (A3 output option - see note) \\
\hline & B01 \(=1 \mathrm{~m} 4\)-core unscreened cable, IP69K \\
\hline & B05 \(=5 \mathrm{~m} 4\)-core unscreened cable, IP69K \\
\hline & B10 \(=10 \mathrm{~m} 4\)-core unscreened cable, IP69K \\
\hline & S01 = 1m 4-core screened cable, IP69K (A3 output options - see note) \\
\hline & S05 = 5m 4-core screened cable, IP69K \\
\hline & S10 \(=10 \mathrm{~m} 4\)-core screened cable, IP69K \\
\hline & C01 \(=\) M12 screw locking receptacle \\
\hline
\end{tabular}

Accessories (order separately)
Drive lever kit - SA202195/MK - see page 25
Mating connectors - see details on page 26

PHASING OF SHAFT TO HOUSING

LEVER OPTIONS (order separately)

\section*{SRH501P AND SRH502P}

\section*{ELECTRICAL}

\section*{CONNECTIONS}

Option A00 - No cable supplied
Option SOO - No cable supplied (Fitted gland to suit screened cable)
Option Bxx - Cable supplied (\(1 \mathrm{~m}, 5 \mathrm{~m}\) or 10 m)
Option Sxx - Screened cable supplied (\(1 \mathrm{~m}, 5 \mathrm{~m}\) or 10 m)
Option C01 - Series M12 screw locking receptacle to IEC 61076-2-101 (Ed.1) /IEC 60947-5-2 fitted to sensor body. Mating cabled sockets to be ordered separately.

\section*{CONNECTING CABLE OPTIONS}

Connection details for no cable option A00 S00

Connection capacity AWG 26-16 or 0.14-1.5mm \({ }^{2}\)

Connection details for cable option Bxx and Sxx

Connection details for option C01-M12 connector (not available for output A3)

M12 mating connectors for cable option C01 (order separately)

Connector IP68
2 metre X61-220-101
5 metre X61-220-102
10 metre X61-220-103

Steel connector IP69K
1.5 metre X61-222-001

5 metre X61-222-003
10 metre X61-222-005

When connecting the sensor, care should be taken with the correct connections.
The sensor is provided with indefinite reverse polarity protection and short circuit protection between output to GND, but if the outputs are connected to the supply this will result in device failure.

*Non-linearity is measured using the Least-Squares method on a computerised calibration system

Analog Output (order code A) - see graph on page 31
\begin{tabular}{lcl}
Voltage output range & & \\
\(\quad\) 9-30V supply & Vdc & Absolute voltage, 0.5 to 4.5 over measurement range (\(\pm 3 \%)\) \\
5V supply & Vdc & Ratiometric output voltage -10 to \(90 \%\) of Vs over measurement range \((\pm 1 \%)\) \\
Monotonic range & Vdc & \(0.25(5 \%)\) and \(4.75(95 \%)\) nominal \\
Load resistance & \(\Omega\) & 10 k minimum (resistive to GND) \\
Output noise & \(\mathbf{m V r m s}\) & \(<1\) \\
Input/ output delay & \(\mathbf{m S}\) & \(<2\)
\end{tabular}

PWM Output (order code P) - See output characteristics on page 31
\begin{tabular}{llc}
PWM frequency & Hz \\
PWM levels & \(\mathbf{9 - 3 0 V}\) supply & Vd \\
& \(\mathbf{5 V}\) supply & Vd
\end{tabular}
Duty cyde
Monotonic range

Load resistance \(\quad \Omega\)
Rise/fall time
\(\mu \mathrm{S}\)
\(244 \pm 20 \%\) over temperature range
0 and 5 nominal (\(\pm 3 \%\))
0 and Vs (\(\pm 1 \%\))
10 to 90 over measurement range
5 and 95 nominal
10 k minimum (resistive to GND)
<20

MECHANICAL
\begin{tabular}{|c|c|c|}
\hline Mechanical angle & 。 & 360, continuous \\
\hline Operating torque - max & \(\mathrm{g}-\mathrm{cm}\) & 1000 \\
\hline Shaft velocity max & \%sec & 3600 \\
\hline Weight & g & 500 \\
\hline Mounting & & Use \(3 \times\) M6 threaded holes in front face or \(3 \times M 6\) clearance holes through the body - see dimensions for details \\
\hline Phasing & & When the shaft flat is facing the scribed mark on the front face (as shown in the diagram), sensor output is at mid travel \(\left(\pm 5^{\circ}\right)\) \\
\hline
\end{tabular}

\section*{SRH 880 P}

\section*{ENVIRON MENTAL}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Protection dass Life}} & IP68 \\
\hline & & 20 million operations (\(10 \times 10^{6}\) cycles) of \(\pm 75^{\circ}\) \\
\hline & & Sensing element life is essentially infinite (contactless), but the SRH880P life figures refer to the shaft seal. Mechanical load (axial and radial) on the shaft should also be considered. \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Dither life \\
Operational temperature \({ }^{\dagger}\)
\end{tabular}} & & Contactless - no degradation due to shaft dither \\
\hline & \({ }^{\circ} \mathrm{C}\) & -40 to +120 (5 V and 9 V supply) \\
\hline & & -40 to +90 (30V supply) \\
\hline \multirow[t]{2}{*}{Storage temperature Vibration} & \({ }^{\circ} \mathrm{C}\) & -55 to +125 \\
\hline & & 10 to 2000 Hz Random - 12.6gn rms - all axes \\
\hline \multicolumn{2}{|l|}{Shock} & Survival to 2500 g - all axes \\
\hline \multicolumn{2}{|l|}{EMC Immunity level} & BS EN 61000-4-3:1999 to \(100 \mathrm{~V} / \mathrm{m}\), 80MHz to 1 GHz and 1.4 GHz to 2.7 GHz (2004/108/EC) \\
\hline
\end{tabular}
\({ }^{\dagger}\) If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

\section*{O PTIO N S}

Measurement range (angle)
Output
Output direction
Cabled socket
Body material
Operating levers
OEM options

\section*{AVAILABILITY}

ORDERING CODES

Select from \(20^{\circ}\) to \(360^{\circ}\) in \(1^{\circ}\) increments (factory programmed) for each output channel Analog voltage (A) or PWM (Pn)
Clockwise or Anticlockwise shaft rotation with increasing output
2 m or 5 m cabled socket assemblies available
Optional anodised aluminium or corrosion resistant stainless steel housing
0 perating levers 155 or 230 mm long should be ordered separately. See details page 25
O utputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; alternative PWM frequencies; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

\section*{Accessories (order separately)}

Drive lever kit - SA202195/MK - see page 25

\section*{DIMENSIONS}

Note: drawings not to scale

\section*{LEVER}

\section*{OPTIONS}

See SRH501P page 25

\section*{ELECTRICAL}

\section*{CON NECTIONS}

\section*{Straight cabled socket}

E series M12 to IEC 61076-2-101(Ed.1)
/IEC 60947-5-2,
PUR jacket
Conforms to VDE 0472 part 804
Cable temperature range -25 to \(+90^{\circ} \mathrm{C}\)

\section*{SHAFT FLAT DETAIL}

Cabled socket
2 metre long No. X61-169-102
5 metre long No. X61-169-105

When connecting the sensor, care should be taken with the correct connections.
The sensor is provided with indefinite reverse polarity protection and short circuit protection between output (Pin 4 - Black) to GND (Pin 1 - Brown), but if the output (Pin 4 - Black) is connected to the supply this will result in device failure.

\section*{TEMPERATURE AND O UTPUT GRAPHS}

MAXIMUM OPERATING TEMPERATURE - DERATING GRAPHS
SRH280DP, NRH280DP, TPS280DP, SRH220DR SRH501P/502P (not A2 \& A3 options)

SRH220DR, SRH501P/502P - OUTPUT A2

SRH501P/502P - OUTPUT A3

A3 Typical temperature slope characteristic (can be used for compensation)

SENSOR OUTPUT GRAPH- examples for three different angles
SRH280P, SRH280DP, NRH280DP, NRH285DR, TPS280DP, SRH220DR - OUTPUT A1 \& A6 SRH501P/502P - OUTPUT A1 \& A6
SRH880P - OUTPUT A

SRH220DR,SRH501P/502P - OUTPUT A2 (0-10Vdc)

SRH501P/502P - OUTPUT A3 (4-20mA)

\section*{PWM OUTPUT CHARACTERISTICS}

SRH280P, SRH280DP, NRH280DP, NRH285DR, TPS280DP, SRH220DR - OUTPUT P1, P2, P3
SRH501P/ 502P - OUTPUT P1, P2, P3
SRH880P- OUTPUT P

PWM levels \(=\) zero volt and \(5 \mathrm{~V}(\pm 3 \%)\) for \(9-30 \mathrm{~V}\) supply
\[
=\text { zero volt and } V_{S}(\pm 1 \%) \text { for } 5 \mathrm{~V} \text { supply }
\]

\section*{Penny+Giles}

\section*{A Curtiss-Wright Company}

Position sensors, joysticks and solenoids for commercial and industrial applications.

15 Airfield Road
Christchurch
Dorset BH23 3TG
United Kingdom
+44 (0) 1202409409
+44 (0) 1202409475 Fax
sales@ pennyandgiles.com

665 North Baldwin Park Boulevard
City of Industry, CA 91746
USA
+16264802150
+16263696318 Fax
us.sales@ pennyandgiles.com

Straussenlettenstr. 7b
85053 Ingolstadt,
Germany
+49 (0) 84161000
+49 (0) 84161300 Fax
info@ penny-giles.de

3-1-A, Xiandai Square,
No 333 Xingpu Rd,
Suzhou Industrial Park, 215126
China
+8651262873380
+8651262873390 Fax
sales@ pennyandgiles.com.cn

The information contained in this brochure on product applications should be used by customers for guidance only. Penny+Giles Controls Ltd makes no warranty or representation in respect of product fitness or suitability for any particular design application, environment, or otherwise, except as may subsequently be agreed in a contract for the sale and purchase of products. Customer's should therefore satisfy themselves of the actual performance requirements and subsequently the products suitability for any particular design application and the environment in which the product is to be used.

Continual research and development may require change to products and specification without prior notification. All trademarks acknowledged.
© Penny+Giles Controls Ltd 2010

36 Nine Mile Point Industrial Estate Cwmfelinfach
G went NP11 7HZ
United Kingdom
+44 (0) 1495202000
+44 (0) 1495202006 Fax
sales@ pennyandgiles.com```

