CONTACTLESS ROTARY POSITION SENSORS
Contactless magnetic rotary sensor IC

The NRH/TPS/SRH series use a high performance, factory programmable 12 bit magnetic rotary sensor IC that includes integrated Hall elements and digital signal processing. The angular position information is provided by a magnet integrated with the sensor’s shaft, or supplied separately. The sensor provides a pulse width modulated signal or an absolute analog voltage signal. Most models are designed to operate from either a 5Vdc regulated or 9-30Vdc unregulated supply, with a high stability circuit and EMC immunity to 100V/m.

Features

- Contactless technology
- Absolute analog or digital (PWM) output
- Measuring range from 20° to 360° in 1° increments
- Single or Dual outputs
- Temperature error less than 50ppm/°C
- Rugged housing and shaft designs
- Protection up to IP69K
- Choice of shaft attachments and mountings
- Rapid despatch of any option
- CE approved

Benefits

- Long life and impervious to dither vibration
- No loss of position on power down
- Maximum sensitivity in all applications
- Optional redundant output for safety critical applications
- Maximises system accuracy over temperature range
- Suitable for extreme environments
- Operation in hostile environments including pressure washing
- Interchangeable with existing installations
- Eliminates customer inventory
- Confidence in EMC performance

Design Statement

The design of models SRH501P and SRH502P are subject to Community Registered Design No 000961610-0001.

The majority of our designs include an input protector circuit (Patent number GB2418083).
Innovative, rugged designs - superior protection
All models in our range have been designed to offer the best combination of materials and mounting styles that ensure survivability in the most rugged applications. We use sealing systems and cable connections that offer superior protection against the most hostile of operating conditions.

Impressive environmental capability
Designed with 21st century applications in mind most of our models can withstand operating temperatures from -40°C to +140°C (+170°C for 72 hours with our NRH and TPS models) and have been tested to withstand severe shock and vibration. All sensors have protection to at least IP68 rating, with some models offering protection to IP69K. With an EMC immunity of 100V/m, these position sensors are ready for the harshest applications.

Superior performance
This range of sensors has an impressive performance specification and most can operate from a 5Vdc regulated or 9 – 30Vdc supply. Outputs can be PWM or analog voltage (nominal 0.5 - 4.5Vdc) over the measurement range, with clockwise or anticlockwise shaft rotation. A choice of 341 different electrical angles from 20° to 360° are possible. 12 bit resolution (0.025%) is available over the selected measuring range, with a non-linearity better than ±0.4% and temperature stability better than ±50ppm/°C. The sensor’s analog output option has a very low output noise level of less than 1mV rms.

World leading availability
All models have been 'designed for manufacture' which enables assembly in state-of-the-art manufacturing cells. This means that we can supply any of the configurations possible from the options offered, in a matter of days from ordering. This allows OEMs to reduce or eliminate their inventory, and call on Penny+Giles to supply 'on demand'.

Performance assured*
Penny+Giles product development process includes exhaustive qualification testing to ensure that performance specifications published in our product brochures and technical data sheets are backed by real-life test evidence. This is our assurance to you that our designs have been tested at these parameters.

* The qualification and suitability of these products in any customer specific application is the responsibility of the customer, unless otherwise agreed with Penny+Giles.

Selection Guide
Penny+Giles offers the widest choice of options to suit your unique application. We can also offer a custom design service if one of our standard models does not suit your requirements.

NRH280DP
• Dual output • 6.5mm deep with metal flange • Separate magnet assembly • Sealed to IP69K • Raychem™ DR25 cable

NRH285DR
• Dual input/dual output version of NRH280DP • 5Vdc operation only

SRH220DR
• Dual input/dual output • 28 x 38mm body with crush proof flange • Sealed to IP68 • Integrated connector

SRH280P
• Single output • 28mm body with crush proof flange • Three shaft styles • Sealed to IP68

SRH280DP
• Dual output • Raychem™ DR25 cable • 28mm body with crush proof flange • Three shaft styles • Sealed to IP68

TPS280DP
• Dual output • D drive • Sealed to IP68 • 25mm body with crush proof flange • Raychem™ DR25 cable+connector

SRH501P
• Single output • 87.5mm mounting flange • Marine grade alloy housing • Sealed to IP69K

SRH502P
• Dual output • 87.5mm mounting flange • Marine grade alloy housing • Sealed to IP69K

SRH880P
• Single output • 88 mm body • Aluminium or stainless steel housing • Sealed to IP68M
NRH 280 DP

dual output no contact rotary sensor

PERFORMANCE

ELECTRICAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td>20 to 360 in 1° increments</td>
</tr>
<tr>
<td>Supply voltage Vdc</td>
<td>9 to 30 (unregulated) and 5 ± 0.5 (regulated)</td>
</tr>
<tr>
<td>Over voltage protection Vdc</td>
<td>Up to 40 (−40 to +60°C)</td>
</tr>
<tr>
<td>Maximum supply current mA</td>
<td><25</td>
</tr>
<tr>
<td>Reverse polarity protection</td>
<td>Yes</td>
</tr>
<tr>
<td>Short circuit protection</td>
<td></td>
</tr>
<tr>
<td>Output to GND</td>
<td>Yes</td>
</tr>
<tr>
<td>Output to supply</td>
<td>In 5V regulated mode only</td>
</tr>
<tr>
<td>Power-on settlement time S</td>
<td><1</td>
</tr>
<tr>
<td>Resolution %</td>
<td>0.025 of measurement range (12 bit)</td>
</tr>
<tr>
<td>Non-linearity* %</td>
<td><±0.4</td>
</tr>
<tr>
<td>Temperature coefficient ppm/°C</td>
<td><±30 in 5V supply mode; <±90 in 9-30V supply mode</td>
</tr>
</tbody>
</table>

*Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage output range</td>
<td>Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range (±3%)</td>
</tr>
<tr>
<td>9-30V supply Vdc</td>
<td>Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range (±1%)</td>
</tr>
<tr>
<td>5V supply Vdc</td>
<td>0.25 (5%) and 4.75 (95%) nominal (A1)</td>
</tr>
<tr>
<td>Monotonic range Vdc</td>
<td>0.05 (1%) and 4.95 (99%) nominal (A4)</td>
</tr>
<tr>
<td>Load resistance Ω</td>
<td>10k minimum (resistive to GND)</td>
</tr>
<tr>
<td>Output noise mVrms</td>
<td><1</td>
</tr>
<tr>
<td>Input/output delay mS</td>
<td><2</td>
</tr>
</tbody>
</table>

PWM Output (order code Pn) - see output characteristics on page 31

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM frequency Hz</td>
<td>244 (P1); 500 (P2); or 1000 (P3) ± 20% over temperature range</td>
</tr>
<tr>
<td>PWM levels 9-30V supply Vdc</td>
<td>0 and 5 nominal (±3%)</td>
</tr>
<tr>
<td>5V supply Vdc</td>
<td>0 and Vs (±1%)</td>
</tr>
<tr>
<td>Duty cycle %</td>
<td>10 to 90 over measurement range</td>
</tr>
<tr>
<td>Monotonic range %</td>
<td>5 and 95 nominal</td>
</tr>
<tr>
<td>Load resistance Ω</td>
<td>10k minimum (resistive to GND)</td>
</tr>
<tr>
<td>Rise/fall time µS</td>
<td><15</td>
</tr>
</tbody>
</table>

MECHANICAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical angle °</td>
<td>360, continuous</td>
</tr>
<tr>
<td>Maximum rotational speed °/sec</td>
<td>3600</td>
</tr>
<tr>
<td>Weight g</td>
<td><55 (with bolt type magnet carrier)</td>
</tr>
<tr>
<td>Mounting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2Nm.</td>
</tr>
<tr>
<td></td>
<td>Bolt (B) or plug (P) type magnet holders are available for the customer to assemble to their own equipment. We also offer a magnet only (M) option for OEM’s to integrate into their design.</td>
</tr>
<tr>
<td></td>
<td>When magnet ident mark is facing toward the sensor and cable exit, output is at mid travel. The sensor housing allows for ±10° adjustment via the mounting flange slots.</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL

Protection class
IP68 (to 2m depth for 2 hours) and IP69K
Life
This product has no contacting parts.
Dither life
Contactless - no degradation due to shaft dither
Operational temperature† °C
-40 to +140 (5V supply) and +170°C for 72 hours
-40 to +135.2 (9V supply option) Derate upper temperature limit by 1.7°C for every 1V increase in supply: e.g. -40 to +100 @30V
Storage temperature °C
-55 to +140
Vibration
BS EN 60068-2-64:1995 Sec 8.4 (31.4gn rms) 20 to 2000Hz Random
Shock
3m drop onto concrete and 2500g
EMC Immunity level
BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)

† See Maximum Operating Temperature – derating graph on page 30.
If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS

Measurement range (angle)
Select from 20° to 360° in 1° increments (factory programmed) for each output channel
Output
Analog voltage (An) or PWM (Pn)
Output direction
Both clockwise, both anticlockwise or one CW, one ACW
Magnet holder
Bolt (B) or plug (P) types, or magnet only (M)
Cable length m
0.5
OEM options
Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing CH1/CH2; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.

AVAILABILITY

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

ORDERING CODES

Measurement range
CH1 = angle in °
Measurement range
CH2 = angle in °
Output
A1 = Analog 0.5-4.5Vdc
A4 = Analog 0.1-4.9Vdc
P1 = PWM, 244Hz
P2 = PWM, 500Hz
P3 = PWM, 1000Hz
Direction
3 = Both clockwise
4 = Both anticlockwise
5 = CH1 CW; CH2 ACW
Magnet holder
B = Bolt type
P = Plug type
M = Magnet only
Cable length
P5 = 0.5m
Electrical Connections

500mm of 4-core cable: FDR-25 sheathed, with 55A spec (24AWG) cores

Magnet Holder Options

- Bolt type
- Plug type

Electrical Angle

- Output increases for CW unit when viewed as shown
- Mid point of electrical angle

Magnet Misalignment

- 2mm to 7mm Z axis air gap
- 2.00 X axis max offset

Note: Any magnet offset or misalignment will increase non-linearity

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow & White) to GND (Black), but if the outputs (Yellow & White) are connected to the supply this will result in device failure.

Output increases with CW or ACW rotation viewed on sensor face - depending on selected order code
PERFORMANCE

ELECTRICAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td>20 to 360 in 1° increments</td>
</tr>
<tr>
<td>Supply voltage Vdc</td>
<td>5 ± 0.5 (regulated) to each independent sensor channel</td>
</tr>
<tr>
<td>Over voltage protection Vdc</td>
<td>Up to 10 (-40 to +60°C)</td>
</tr>
<tr>
<td>Maximum supply current mA</td>
<td><12.5 each independent supply (<25 total)</td>
</tr>
<tr>
<td>Reverse polarity protection</td>
<td>Yes</td>
</tr>
<tr>
<td>Short circuit protection</td>
<td></td>
</tr>
<tr>
<td>Output to GND</td>
<td>Yes</td>
</tr>
<tr>
<td>Output to supply</td>
<td>Yes</td>
</tr>
<tr>
<td>Power-on settlement time S</td>
<td><1</td>
</tr>
<tr>
<td>Resolution %</td>
<td>0.025 of measurement range (12 bit)</td>
</tr>
<tr>
<td>Non-linearity* %</td>
<td><±0.4</td>
</tr>
<tr>
<td>Temperature coefficient ppm/°C</td>
<td><±30</td>
</tr>
</tbody>
</table>

* Non-linearity is measured using the Least-Squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage output range Vdc</td>
<td>Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range (±1%)</td>
</tr>
<tr>
<td>Monotonic range Vdc</td>
<td>0.25 (5%) and 4.75 (95%) nominal (A1)</td>
</tr>
<tr>
<td>Load resistance Ω</td>
<td>10k minimum (resistive to GND)</td>
</tr>
<tr>
<td>Output noise mVrms</td>
<td><1</td>
</tr>
<tr>
<td>Input/output delay mS</td>
<td><2</td>
</tr>
</tbody>
</table>

PWM Output (order code Pn) - see output characteristics on page 31

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM frequency Hz</td>
<td>244 (P1); 500 (P2); or 1000 (P3) ±20% over temperature range</td>
</tr>
<tr>
<td>PWM levels 5V supply Vdc</td>
<td>0 and Vs (±1%)</td>
</tr>
<tr>
<td>Duty cycle %</td>
<td>10 to 90 over measurement range</td>
</tr>
<tr>
<td>Monotonic range %</td>
<td>5 and 95 nominal</td>
</tr>
<tr>
<td>Load resistance Ω</td>
<td>10k minimum (resistive to GND)</td>
</tr>
<tr>
<td>Rise/fall time μS</td>
<td><15</td>
</tr>
</tbody>
</table>

MECHANICAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical angle °</td>
<td>360, continuous</td>
</tr>
<tr>
<td>Maximum rotational speed °/sec</td>
<td>3600</td>
</tr>
<tr>
<td>Weight g</td>
<td><55 (with bolt type magnet carrier)</td>
</tr>
<tr>
<td>Mounting</td>
<td>Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2N.m. Bolt (B) or plug (P) type magnet holders are available for the customer to assemble to their own equipment. We also offer a magnet only (M) option for O EM’s to integrate into their design.</td>
</tr>
<tr>
<td>Phasing</td>
<td>When magnet ident mark is facing toward the sensor and cable exit, output is at mid travel. The sensor housing allows for ±10° adjustment via the mounting flange slots.</td>
</tr>
</tbody>
</table>
NRH285DR

ENVIRONMENTAL

Protection class
Life
Dither life
Operational temperature°C
Storage temperature°C
Vibration
Shock
EMC Immunity level

IP68 (to 2m depth for 2 hours) and IP69K
This product has no contacting parts.
Contactless - no degradation due to shaft dither
-40 to +140 and +170°C for 72 hours
-55 to +140
BS EN 60068-2-64:1995 Sec 8.4 (31.4gn rms) 20 to 2000Hz Random
3m drop onto concrete and 2500g
BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)

*If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS

Measurement range (angle)
Output
Output direction
Magnet holder
Cable length m
OEM options

Select from 20° to 360° in 1° increments (factory programmed) for each output channel
Analog voltage (An) or PWM (Pn)
Both clockwise, both anticlockwise or one CW, one ACW
Bolt (B) or plug (P) types, or magnet only (M)

Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages;
different output phasing CH1/CH2; faster input/output delay; extended analog range; and
output mapping for potentiometer replacements.

AVAILABILITY

All standard configurations can be supplied rapidly from the factory – check with your local supplier for more details

ORDERING CODES

NRH285DR/...../...../...../...../...../.....

Measurement range
CH1 = angle in °
CH2 = angle in °

Output
A1 = Analog 0.5-4.5Vdc
A4 = Analog 0.1-4.9Vdc
P1 = PWM, 244 Hz
P2 = PWM, 500 Hz
P3 = PWM, 1000 Hz

Direction
3 = Both clockwise
4 = Both anticlockwise
5 = CH1 CW; CH2 ACW

Magnet holder
B = Bolt type
P = Plug type
M = Magnet only

Cable length
P5 = 0.5m
ELECTRICAL CONNECTIONS

2 x 500mm of 3-core cable: FDR-25 sheathed, with 55A spec (24AWG) cores

<table>
<thead>
<tr>
<th>Cable colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>+V Supply</td>
</tr>
<tr>
<td>Yellow</td>
<td>Output 1 + 2</td>
</tr>
<tr>
<td>Black</td>
<td>0V Supply (GND)</td>
</tr>
</tbody>
</table>

Output increases with CW or ACW rotation viewed on sensor face - depending on selected order code

Note: any magnet offset or misalignment will increase non-linearity

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow) to GND (Black) and outputs to supply (Red) on NRH 285DR model only.

Cables are identified on the mounting plate: 1 = CH1, 2 = CH2
PERFORMANCE

Output options

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A4</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5-4.5 or 0.1-4.9Vdc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-10Vdc</td>
</tr>
</tbody>
</table>

ELECTRICAL

<table>
<thead>
<tr>
<th>Specification</th>
<th>A1</th>
<th>A4</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range °</td>
<td>20 to 360 in 1° increments</td>
<td>20 to 360 in 1° increments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage Vdc</td>
<td>9 to 30 (unregulated) and 5 ± 0.5 (regulated)</td>
<td>13.5 to 30 (unregulated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over voltage protection Vdc</td>
<td>Up to 40 (-40 to +60°C)</td>
<td>Up to 40 (-40 to +60°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum supply current mA</td>
<td><12.5 each independent supply (<25 total)</td>
<td><30 (15 each channel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse polarity protection</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short circuit protection</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output to GND</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output to supply</td>
<td>In 5V regulated mode only</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-on settlement time S</td>
<td><1</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution %</td>
<td>0.025 of measurement range (12 bit)</td>
<td>0.025 of measurement range (12 bit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-linearity %</td>
<td><±0.4</td>
<td><±0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient ppm/°C</td>
<td><±30 (5V supply mode) <±110 (9-30V supply mode)</td>
<td><±125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Voltage Output (order code A1, A4) - see graph on page 31

<table>
<thead>
<tr>
<th>Voltage output range</th>
<th>Vdc</th>
<th>9-30V supply</th>
<th>Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range (±3%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V supply</td>
<td>Vdc</td>
<td>Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range (±1%)</td>
<td></td>
</tr>
<tr>
<td>Monotonic range</td>
<td>Vdc</td>
<td>0.25 (5%) and 4.75 (95%) nominal (A1)</td>
<td></td>
</tr>
<tr>
<td>Load resistance</td>
<td>Ω</td>
<td>10k minimum (resistive to GND)</td>
<td></td>
</tr>
<tr>
<td>Output noise</td>
<td>mVrms</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Input/output delay</td>
<td>mS</td>
<td><2</td>
<td></td>
</tr>
</tbody>
</table>

Analog Voltage Output (order code A2) - see typical graph on page 31

<table>
<thead>
<tr>
<th>Voltage output range</th>
<th>Vdc</th>
<th>Absolute voltage, nominally 0.2 to 9.8 (±0.2V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load resistance</td>
<td>Ω</td>
<td>10k minimum (resistive to GND)</td>
</tr>
<tr>
<td>Output noise</td>
<td>mVrms</td>
<td><1</td>
</tr>
<tr>
<td>Input/output delay</td>
<td>mS</td>
<td>3.5</td>
</tr>
</tbody>
</table>

PWM Output (order code Pn) - see output characteristics on page 31

<table>
<thead>
<tr>
<th>Specification</th>
<th>Hz</th>
<th>244 (P1); 500 (P2); or 1000 (P3) ±20% over temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM frequency</td>
<td></td>
<td>244 (P1); 500 (P2); or 1000 (P3) ±20% over temperature range</td>
</tr>
<tr>
<td>PWM levels 9-30V supply Vdc</td>
<td>Vdc</td>
<td>0 and 5 nominal (±3%)</td>
</tr>
<tr>
<td>5V supply Vdc</td>
<td>Vdc</td>
<td>0 and Vs (±1%)</td>
</tr>
<tr>
<td>Duty cycle %</td>
<td>%</td>
<td>10 to 90 over measurement range</td>
</tr>
<tr>
<td>Monotonic range %</td>
<td>%</td>
<td>5 and 95 nominal</td>
</tr>
<tr>
<td>Load resistance Ω</td>
<td></td>
<td>10k minimum (resistive to GND)</td>
</tr>
<tr>
<td>Rise/fall time µS</td>
<td></td>
<td><15</td>
</tr>
</tbody>
</table>

SRH 220DR DUAL REDUNDANT OUTPUT

contactless rotary sensor
MECHANICAL

- **Mechanical angle**: 360, continuous
- **Operating torque**: 120 g-cm
- **Maximum rotational speed**: 3600 °/sec
- **Weight**: <51 g

Mounting

- Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2N

Phasing

- When shaft drive detail is aligned as shown in Electrical Angle Diagram (page 12) output is at mid travel. The sensor housing allows for ±10° adjustment via the mounting flange slots.

ENVIRONMENTAL

- **Protection class**: IP68 - with AMP connector option (when recommended mating part is fully connected) IP67 - with Deutsch connector option (when recommended mating part is fully connected)
- **Life**: 20 million operations (10 x 10⁶ cycles) of ±75°; sensing element life is essentially infinite (contactless)
- **Dither life**: Contactless - no degradation due to shaft dither
- **Operational temperature**:
 - Output A1, A4, P1-3: -40 to +140 (5V supply), -40 to +135.7 (9V supply) Derate upper temperature limit by 1.7°C for every 1V increase in supply: e.g. -40 to +100 @ 30V
 - Output A2: 40 to +115 (13.5V supply) Derate upper temperature limit by 0.91°C for every 1V increase in supply: e.g. -40 to +100 @ 30V
- **Storage temperature**: -55 to +140°C
- **Vibration**: BS EN 60068-2-64:1995 Sec 8.4 (31.4gn rms) 20 to 2000Hz Random
- **Shock**: 3m drop onto concrete and 2500g
- **EMC Immunity level**: BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)

OPTIONS

- **Measurement range (angle)**: Select from 20° to 360° in 1° increments (factory programmed) for each output channel
- **Output**: Analog voltage (An) or PWM (Pn)
- **Output direction**: Both clockwise, both anticlockwise or one CW, one ACW
- **Shaft style**: D section shaft
- **Connector**: AMP Superseal 1.5 (A) or Deutsch DT04-6P 6-way integrated connectors
- **Operating lever**: An operating lever kit can be supplied separately. See details on page 12
- **OEM options**: Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing CH1/CH2; faster input/output delay; extended analog range; and output mapping for potentiometer replacements. We can also supply mating connectors, subject to minimum quantities

AVAILABILITY

- All standard configurations can be supplied rapidly from the factory – check with your local supplier for more details

ORDERING CODES

<table>
<thead>
<tr>
<th>Measurement range</th>
<th>CH1 = angle in °</th>
<th>CH2 = angle in °</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>A1 = Analog 0.5-4.5Vdc</td>
<td>A2 = Analog 0-10Vdc</td>
</tr>
<tr>
<td></td>
<td>A4 = Analog 0.1-4.9Vdc</td>
<td>P1 = PWM, 244 Hz</td>
</tr>
<tr>
<td></td>
<td>P2 = PWM, 500 Hz</td>
<td>P3 = PWM, 1000 Hz</td>
</tr>
<tr>
<td>Direction</td>
<td>3 = Both clockwise</td>
<td>4 = Both anticlockwise</td>
</tr>
<tr>
<td></td>
<td>5 = CH1 CW; CH2 ACW</td>
<td>6 = CH1 ACW; CH2 CW</td>
</tr>
<tr>
<td>Shaft style</td>
<td>D = D shaft</td>
<td></td>
</tr>
<tr>
<td>Connector</td>
<td>A = AMP 1.5 Superseal</td>
<td>D = Deutsch DT04-6P</td>
</tr>
</tbody>
</table>

Accessories (order separately)

- Drive lever kit - SA20758 (includes lever and dowel pin)

Recommended Mating Connectors (can be supplied for OEM customers)

- AMP Superseal 1.5 Plug – Part 282090-1 (plus 6 x receptacle contacts to match your wire size)
- Deutsch DT06 Plug – Part DT06-6S (plus 6 x socket contacts to match your wire size)
DIMENSIONS

Note: drawings not to scale

ELECTRICAL CONNECTIONS

Option A - AMP Superseal 1.5 connector
Option B - Deutsch DT04-6P connector

Mating connectors are not supplied

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with indefinite reverse polarity protection and short circuit protection between output to GND (Black), but if the outputs are connected to the supply this will result in device failure.

Output increases with CW or ACW rotation viewed on shaft - depending on selected order code.
PERFORMANCE

ELECTRICAL
- **Measurement range**: ° 20 to 360 in 1° increments
- **Supply voltage**: Vdc 9 to 30 (unregulated) and 5 ± 0.5 (regulated)
- **Over voltage protection**: Vdc Up to 40 (-40 to +60°C)
- **Maximum supply current**: mA <12.5
- **Reverse polarity protection**: Yes
- **Short circuit protection**: Yes
- **Output to GND**: In 5V regulated mode only
- **Output to supply**: 0.025 of measurement range (12 bit)
- **Power-on settlement time**: S <1
- **Resolution**: % 0.025 of measurement range (12 bit)
- **Non-linearity**: % <±0.4
- **Temperature coefficient**: ppm/°C <±50

Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31
- **Voltage output range**
- 9-30V supply Vdc Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range (±3%)
- 5V supply Vdc Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range (±1%)
- **Monotonic range**: Vdc 0.25 (5%) and 4.75 (95%) nominal (A1)
- **Load resistance**: Ω 10k minimum (resistive to GND)
- **Output noise**: mVrms <1
- **Input/output delay**: mS <2

PWM Output (order code P) - See output characteristics on page 31
- **PWM frequency**: Hz 244 (P1); 500 (P2); or 1000 (P3) ±20% over temperature range
- **PWM levels**
 - 9-30V supply Vdc 0 and 5 nominal (±3%)
 - 5V supply Vdc 0 and Vs (±1%)
- **Duty cycle**: % 10 to 90 over measurement range
- **Monotonic range**: % 5 and 95 nominal
- **Load resistance**: Ω 10k minimum (resistive to GND)
- **Rise/fall time**: μS <15

MECHANICAL
- **Mechanical angle**: ° 360, continuous
- **Operating torque - maximum**
 - sealed shaft IP68 g-cm 120
 - unsealed shaft IP50 g-cm 100
- **Shaft velocity maximum**: °/sec 3600
- **Weight**: g <35
- **Mounting**: Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2Nm
- **Phasing**: When shaft flat (or shaft ident mark) is facing toward the cable exit, output is at mid travel. The sensor housing allows for ±10° adjustment via the mounting flange slots.
SRH280P

ENVIRONMENTAL

Protection class
IP68 (to 2m depth for 1 hour) or IP50

Life
20 million operations (10x10^6 cycles) of ±75º
Sensing element life is essentially infinite (contactless); the SRH280P life figure refers to the operating shaft seal. Mechanical load (axial and radial) on the shaft should also be considered.

Dither life
Contactless - no degradation due to shaft dither

Operational temperature
-40 to +140 (5V supply)
-40 to +137 (9V supply) Derate upper temperature limit by 0.57ºC for every 1V increase in supply: e.g. -40 to +125 @ 30V

Storage temperature
-55 to +140

Vibration
BS EN 60068-2-64:1995 Sec 8.4 (14gn rms) 20 to 2000Hz Random

Shock
3m drop onto concrete

EMC Immunity level
BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)

† See Maximum Operating Temperature – Derating graph on page 30
If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS

Measurement range (angle)
Select from 20° to 360° in 1° increments (factory programmed)

Output
Analog voltage (An) or PWM (Pn)

Output direction
Clockwise or Anticlockwise shaft rotation with increasing output

Shaft style
D section, sprung shaft (S) or 2.4mm blade shaft (H)

Shaft sealing
IP50 or IP68

Cable length
0.2, 0.5 or 2.0

Custom housing
Synchro mount style with ball race bearings - ask our technical sales team for details

OEM options
Output can be programmed to provide: non linear law; switch output; clamp voltages; faster input/output delay; extended analog range; and output mapping for potentiometer replacements

AVAILABILITY

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

ORDERING CODES

SRH280P/....../....../....../....../....../......

Measurement range = angle in °

Output
A1 = Analog 0.5-4.5Vdc
A4 = Analog 0.1-4.9Vdc
P1 = PWM, 244 Hz
P2 = PWM, 500 Hz
P3 = PWM, 1000 Hz

Direction
1 = Clockwise
2 = Anticlockwise

Shaft style
D = D shaft
S = Sprung shaft
H = 2.4mm blade shaft

Shaft sealing
50 = IP50
68 = IP68

Cable length
P2 = 0.2m
P5 = 0.5m
02 = 2.0m
DIMENSIONS

Note: drawings not to scale

SHAFT OPTIONS

<table>
<thead>
<tr>
<th>D shaft</th>
<th>S shaft</th>
<th>H shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable exit</td>
<td>4.500 4.450</td>
<td>Cable exit</td>
</tr>
<tr>
<td>All shafts ø6.000 5.987</td>
<td>Ears pre-sprung to 3.10/3.15</td>
<td>Shaft ident.</td>
</tr>
<tr>
<td>Suggested mating drive for ‘S’ shaft</td>
<td>3.060 3.000</td>
<td>Suggested mating drive for ‘H’ shaft</td>
</tr>
<tr>
<td>Output increases for ACW unit when viewed on shaft</td>
<td>Output increases for CW unit when viewed on shaft</td>
<td></td>
</tr>
<tr>
<td>Sensor is at mid electrical angle when shaft flat (or ident mark) and cable exit are aligned as shown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL CONNECTIONS

200, 500 or 2000mm of 3-core cable: PUR sheathed, with PTFE insulated 19/0.15 cores

Cable colour	**Description**
Red | +V Supply
Yellow | Output
Black | 0V Supply (GND)

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between output (Yellow) to GND (Black), but if the output (Yellow) is connected to the supply it will result in device failure.

Output increases with CW or ACW rotation viewed on shaft - depending on selected order code
PERFORMANCE

ELECTRICAL

Measurement range ° 20 to 360 in 1° increments
Supply voltage Vdc 9 to 30 (unregulated) and 5 ± 0.5 (regulated)
Over voltage protection Vdc Up to 40 (-40 to +60°C)
Maximum supply current mA < 25
Reverse polarity protection Yes
Short circuit protection
 Output to GND Yes
 Output to supply In 5V regulated mode only
 Power-on settlement time S < 1
Resolution % 0.025 of measurement range (12 bit)
Non-linearity* % < ±0.4
Temperature coefficient ppm/°C < ±30 in 5V supply mode; < ±90 in 9-30V supply mode

* Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

Voltage output range
 9-30V supply Vdc Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range (± 3%)
 5V supply Vdc Ratio-metric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range (±1%)
Monotonic range Vdc 0.25 (5%) and 4.75 (95%) nominal (A1)
 Vdc 0.05 (1%) and 4.95 (99%) nominal (A4)
Load resistance Ω 10k minimum (resistive to GND)
Output noise mVrms < 1
Input/output delay mS < 2

PWM Output (order code Pn) - see output characteristics on page 31

PWM frequency Hz 244 (P1); 500 (P2); or 1000 (P3) ± 20% over temperature range
PWM levels 9-30V supply Vdc 0 and 5 nominal (±3%)
 5V supply Vdc 0 and Vs (±1%)
Duty cycle % 10 to 90 over measurement range
Monotonic range % 5 and 95 nominal
Load resistance Ω 10k minimum (resistive to GND)
Rise/fall time µS < 15

MECHANICAL

Mechanical angle ° 360, continuous
Operating torque - maximum
 sealed shaft IP68 g·cm 120
 unsealed shaft IP50 g·cm 100
Shaft velocity maximum °/sec 3600
Weight g < 35
Mounting
Phasing

Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2Nm

When shaft flat (or shaft ident mark) is facing toward the cable exit, output is at mid travel. The sensor housing allows for ±10° adjustment via the mounting flange slots.
ENVIRONMENTAL

Protection class
IP68 (to 2m depth for 1 hour) or IP50

Life
20 million operations (10 x 10^6 cycles) of ±75°
Sensing element life is essentially infinite (contactless); the SRH280DP life figure refers to the operating shaft seal. Mechanical load (axial and radial) on the shaft should also be considered.

Dither life
Contactless - no degradation due to shaft dither

Operational temperature† °C
-40 to +140 (5V supply)
-40 to +135.7 (9V supply) Derate upper temperature limit by 1.7°C for every 1V increase in supply:
e.g. -40 to +100 @30V

Storage temperature °C
-55 to +140

Vibration
BS EN 60068-2-64:1995 Sec 8.4 (31.4gn rms) 20 to 2000Hz Random

Shock
3m drop onto concrete

EMC Immunity level
BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)

OPTIONS

Measurement range (angle) Select from 20° to 360° in 1° increments (factory programmed) for each output channel

Output
Analog voltage (An) or PWM (Pn)

Output direction
Both clockwise, both anticlockwise or one CW, one ACW

Shaft style
D section, sprung shaft (S) or 2.4mm blade shaft (H)

Shaft sealing
IP50 or IP68

Cable length m
0.2 or 0.5

Custom housing
Synchro mount style with ball race bearings - ask our technical sales team for details

OEM options
Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing CH1/CH2; faster input/output delay; extended analog range; and output mapping for potentiometer replacements

AVAILABILITY

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

ORDERING CODES

SRH280DP/ / / / / / /

Measurement range CH1 = angle in °
Measurement range CH2 = angle in °

Output A1 = Analog 0.5-4.5Vdc
A4 = Analog 0.1-4.9Vdc
P1 = PWM, 244 Hz
P2 = PWM, 500 Hz
P3 = PWM, 1000 Hz

Direction 3 = Both clockwise
4 = Both anticlockwise
5 = CH1 CW; CH2 ACW

Shaft style D = D shaft
S = Sprung shaft
H = 2.4mm blade shaft

Shaft sealing 50 = IP50
68 = IP68

Cable length P2 = 0.2m
P5 = 0.5m

† See Maximum Operating Temperature - derating graph on page 30.
If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating.
DIMENSIONS

Note: drawings not to scale

ELECTRICAL CONNECTIONS

200 or 500mm of 4-core cable: FDR-25 sheathed, with 55A spec (24AWG) cores

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow & White) to GND (Black), but if the outputs (Yellow & White) are connected to the supply this will result in device failure.

Output increases with CW or ACW rotation viewed on shaft - depending on selected order code.

<table>
<thead>
<tr>
<th>Cable colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>+V Supply</td>
</tr>
<tr>
<td>Yellow</td>
<td>Output 1</td>
</tr>
<tr>
<td>White</td>
<td>Output 2</td>
</tr>
<tr>
<td>Black</td>
<td>0V Supply (GND)</td>
</tr>
</tbody>
</table>

Output increases for ACW unit when viewed on shaft

Output increases for CW unit when viewed on shaft

Sensor is at mid electrical angle when shaft flat and cable exit are aligned as shown
PERFORMANCE

ELECTRICAL

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range °</td>
<td>20 to 360 in 1° increments</td>
</tr>
<tr>
<td>Supply voltage Vdc</td>
<td>9 to 30 (unregulated) and 5 ± 0.5 (regulated)</td>
</tr>
<tr>
<td>Over voltage protection Vdc</td>
<td>Up to 40 (-40 to +60°C)</td>
</tr>
<tr>
<td>Maximum supply current mA</td>
<td><25</td>
</tr>
<tr>
<td>Reverse polarity protection</td>
<td>Yes</td>
</tr>
<tr>
<td>Short circuit protection</td>
<td></td>
</tr>
<tr>
<td>Output to GND</td>
<td>Yes</td>
</tr>
<tr>
<td>Output to supply</td>
<td>In 5V regulated mode only</td>
</tr>
<tr>
<td>Power-on settlement time S</td>
<td><1</td>
</tr>
<tr>
<td>Resolution %</td>
<td>0.025 of measurement range (12 bit)</td>
</tr>
<tr>
<td>Non-linearity* %</td>
<td><±0.4</td>
</tr>
<tr>
<td>Temperature coefficient ppm/°C</td>
<td><±30 in 5V supply mode; <±90 in 9-30V supply mode</td>
</tr>
</tbody>
</table>

*Non-linearity is measured using the Least-Squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage output range 9-30V supply Vdc</td>
<td>Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range (±3%)</td>
</tr>
<tr>
<td>5V supply Vdc</td>
<td>Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range (±1%)</td>
</tr>
<tr>
<td>Monotonic range Vdc</td>
<td>0.25 (5%) and 4.75 (95%) nominal (A1)</td>
</tr>
<tr>
<td>5Vdc</td>
<td>0.05 (1%) and 4.95 (99%) nominal (A4)</td>
</tr>
<tr>
<td>Load resistance Ω</td>
<td>10k minimum (resistive to GND)</td>
</tr>
<tr>
<td>Output noise mVrms</td>
<td><1</td>
</tr>
<tr>
<td>Input/output delay mS</td>
<td><2</td>
</tr>
</tbody>
</table>

PWM Output (order code Pn) - see output characteristics on page 31

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM frequency Hz</td>
<td>244 (P1); 500 (P2); or 1000 (P3) ±20% over temperature range</td>
</tr>
<tr>
<td>PWM levels 9-30V supply Vdc</td>
<td>0 and 5 nominal (±3%)</td>
</tr>
<tr>
<td>5V supply Vdc</td>
<td>0 and Vs (±1%)</td>
</tr>
<tr>
<td>Duty cycle %</td>
<td>10 to 90 over measurement range</td>
</tr>
<tr>
<td>Monotonic range %</td>
<td>5 and 95 nominal</td>
</tr>
<tr>
<td>Load resistance Ω</td>
<td>10k minimum (resistive to GND)</td>
</tr>
<tr>
<td>Rise/fall time μS</td>
<td><15</td>
</tr>
</tbody>
</table>

MECHANICAL

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical angle °</td>
<td>360, continuous</td>
</tr>
<tr>
<td>Operating torque g-cm</td>
<td>10</td>
</tr>
<tr>
<td>Maximum rotational speed °/sec</td>
<td>3600</td>
</tr>
<tr>
<td>Weight g</td>
<td><30</td>
</tr>
<tr>
<td>Mounting</td>
<td></td>
</tr>
<tr>
<td>Phasing</td>
<td></td>
</tr>
</tbody>
</table>

Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2Nm

When shaft drive detail is aligned as shown in Electrical Angle Diagram (page 21), output is at mid travel. The sensor housing allows for ±10° adjustment via the mounting flange slots.
TPS 280 DP

Environmental

Protection class
IP68 (to 2m depth for 1 hour) and IP69K

Life
60 million operations (30 \(\times \) 10^6 cycles) of ±75°; Sensing element life is essentially infinite (contactless)

Dither life
Contactless - no degradation due to shaft dither

Operational temperature
-40 to +140 (5V supply) and +170°C for 72 hours

Storage temperature
-55 to +140

Vibration
BS EN 60068-2-64:1995 Sec.8.4 (3.14g rms) 20 to 2000Hz Random

Shock
3m drop onto concrete and 2500g

EMC Immunity level
BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)

† See Maximum Operating Temperature - Derating graph on page 30. If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating.

Options

Measurement range (angle)
Select from 20° to 360° in 1° increments (factory programmed) for each output channel

Output
Analog voltage (An) or PWM (Pn)

Output direction
Both clockwise, both anticlockwise or one CW, one ACW

Cable length
0.2 or 0.5

Connector
Not fitted (C0) or Mini Sure Seal MSS4R fitted (C1)

OEM options
Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing CH1/CH2; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.

Availability

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details

Ordering codes

TPS280DP/...../...../...../...../...../.....

- **Measurement range**
 - CH1 = angle in °
 - CH2 = angle in °

- **Output**
 - A1 = Analog 0.5-4.5Vdc
 - A4 = Analog 0.1-4.9Vdc
 - P1 = PWM, 244 Hz
 - P2 = PWM, 500 Hz
 - P3 = PWM, 1000 Hz

- **Direction**
 - 3 = Both clockwise
 - 4 = Both anticlockwise
 - 5 = CH1 CW, CH2 ACW

- **Cable length**
 - P2 = 0.2m
 - P5 = 0.5m

- **Connector**
 - C0 = No connector
 - C1 = Mini Sure Seal MSS4R

Accessories (order all items separately)

- Mating connector – X61-227-002 Mini Sure Seal MSS4P
- X61-227-201 PIN contact (2off required)
- X61-227-202 SOCKET contact (2off required)
ELECTRICAL CONNECTIONS

Option C0 - 200 or 500mm of 4-core cable: FDR-25 sheathed, with 55A spec (24AWG) cores

Option C1 - Mini sure seal MSS4R fitted to cable

DIMENSIONS
Note: drawings not to scale

ELECTRICAL ANGLE

Output increases with CW or ACW rotation viewed on shaft drive - depending on selected order code

Cable colour	Description
Red | + V Supply
Black | 0V Supply GND
Yellow | CH1 Output
White | CH2 Output

RECOMMENDED MATING DRIVE

C1 Connector option
Pin 1 = V+ Supply
Pin 2 = 0V Supply GND
Pin 3 = CH1 Output
Pin 4 = CH2 Output

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow & White) to GND (Black), but if the outputs (Yellow & White) are connected to the supply this will result in device failure.
PERFORMANCE
Output options

ELECTRICAL

Measurement range °C 20 to 360 in 1° increments
Supply voltage
 unregulated Vdc 9 to 30
 regulated Vdc 5 ± 0.5
Over voltage protection Vdc Up to 40 (-40 to +60°C)
Maximum supply current mA <25
Reverse polarity protection Yes
Short circuit protection Yes
Output to GND Yes
Output to supply Yes
Power-on settlement time S 1 in 5V regulated mode only
Resolution % 0.025 of measurement range (12 bit)
Non-linearity* % < ± 0.4
Temperature coefficient ppm/°C < ± 30 in 5V supply mode

Voltage output range
 9-30V supply Vdc Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range (±3%)
 5V supply Vdc Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range (±1%)
Monotonic range Vdc 0.25 (5%) and 4.75 (95%) nominal (A1)
 Vdc 0.05 (1%) and 4.95 (99%) nominal (A4)
Load resistance Ω 10k minimum (resistive to GND)
Output noise mVrms <1
Input/output delay mS <2

Analog Voltage Output - (order code A2) see typical graph on page 31
Voltage output range Vdc Absolute voltage, nominally 0.2 to 9.8 (±0.2V)
Load resistance Ω 10k minimum (resistive to GND)
Output noise mVrms <1
Input/output delay mS 3.5

Analog Current Output - (order code A3) see typical graph on page 31
Current output range mA Absolute current, nominally 4 to 20 (±2% span)
Load resistance Ω 400 maximum (resistive to GND)
Output noise μAms <10
Input/output delay mS 3.75

*Non-linearity is measured using the Least-Squares method on a computerised calibration system
**Temperature compensation possible by using graph shown on page 30
Mechanical

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical angle °</td>
<td>360, continuous</td>
</tr>
<tr>
<td>Operating torque - max g·cm</td>
<td>1000</td>
</tr>
<tr>
<td>Shaft velocity maximum °/sec</td>
<td>3600</td>
</tr>
<tr>
<td>Weight g</td>
<td>265 (without cable)</td>
</tr>
<tr>
<td>Mounting</td>
<td>Use 3 x M6 threaded holes in front face or 3 x M6 (or 1/4 UNC) clearance holes through the flange – See dimensions for details</td>
</tr>
<tr>
<td>Phasing</td>
<td>When the shaft flat is facing towards the cable exit, sensor output is at mid electrical angle (±5°)</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection class</td>
<td>IP69K with cable codes Bxx and Sxx</td>
</tr>
<tr>
<td>Life</td>
<td>20 million operations (10 x 10⁶ cycles) of ±75° Sensing element life is essentially infinite (contactless), and the SRHS01P/502P life figures refer to the operating shaft seal. Mechanical load (axial and radial) on the shaft should also be considered.</td>
</tr>
<tr>
<td>Dither life</td>
<td>Contactless - no degradation due to shaft dither</td>
</tr>
<tr>
<td>Shaft side load</td>
<td>2Kg mounted on sensor shaft - tested 3 million cycles</td>
</tr>
<tr>
<td>Operational temperature † °C</td>
<td>-40 to +140 (5V supply) -40 to +135.7 (9V supply) Derate upper temperature limit by 1.7°C for every 1V increase in supply: e.g. -40 to +100 @ 30V -40 to +115 (13.5V supply) Derate upper temperature limit by 0.91°C for every 1V increase in supply: e.g. -40 to +100 @ 30V -40 to +120 (9V supply) Derate upper temperature limit by 1.05°C for every 1V increase in supply: e.g. -40 to +98 @ 30V</td>
</tr>
<tr>
<td>Storage temperature °C</td>
<td>-55 to +140</td>
</tr>
<tr>
<td>Vibration</td>
<td>BS EN 60068-2-64:1995 Sec 8.4 (14gn rms) 20 to 2000Hz Random</td>
</tr>
<tr>
<td>Shock</td>
<td>3m drop onto concrete and 2500g – all axes</td>
</tr>
<tr>
<td>EMC Immunity level</td>
<td>BS EN 61000-4-3:1999, to 100V/m, 80MHz to1GHz and 1.4GHz to 2.7GHz (35V/m 1.4GHz to 2.7GHz for output A3) (2004/108/EC)</td>
</tr>
<tr>
<td>Salt spray</td>
<td>BS EN 60068-2-52: 1996, Test Kb Severity 2 (48hr)</td>
</tr>
<tr>
<td>Humidity</td>
<td>BS EN 60068-2-30: 2005, Severity Db (55°C, 93%RH)</td>
</tr>
</tbody>
</table>

† See Maximum Operating Temperature – Derating graphs on page 30. If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating.

Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range (angle)</td>
<td>Select from 20° to 360° in 1° increments (factory programmed) for each output channel</td>
</tr>
<tr>
<td>Output</td>
<td>Analog voltage (A1, A2, A4) Analog current (A3)</td>
</tr>
<tr>
<td></td>
<td>PWM (Pn)</td>
</tr>
<tr>
<td></td>
<td>CANbus outputs: J1939 (J1); CANopen (O1)</td>
</tr>
<tr>
<td>Output direction</td>
<td>Both clockwise, both anticlockwise or one CW, one ACW</td>
</tr>
<tr>
<td>Cabled sockets</td>
<td>No cable (A00, S00), 1m, 5m, 10m unscreened (Bxx) or screened (Sxx) cable or M12 receptacle (C01)</td>
</tr>
<tr>
<td>Operating levers</td>
<td>1.5, 2, 5 & 10m mating cabled sockets can be ordered separately. See details on page 26</td>
</tr>
<tr>
<td>OEM options</td>
<td>Operating levers 155 or 230mm long can be ordered separately. See details on page 25</td>
</tr>
<tr>
<td></td>
<td>Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing CH1/CH2; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.</td>
</tr>
</tbody>
</table>
SRH501P AND SRH502P

AVAILABILITY

ORDERING CODES

NOTE: When selecting output option A3 (4-20mA), cable codes Sxx are the only cable codes allowable.

SINGLE OUTPUT SRH501P

Measurement range = angle in °

Output
A1 = Analog 0.5-4.5Vdc
A2 = Analog 0-10Vdc
A3 = Analog 4-20mA
A4 = Analog 0.1-4.9Vdc
P1 = PWM, 244 Hz
P2 = PWM, 500 Hz
P3 = PWM, 1000 Hz

Direction
1 = Clockwise
2 = Anticlockwise

Cable code
A00 = No cable, gland fitting
S00 = No cable, screened cable gland (A3 output option – see note)
B01 = 1m 3-core unscreened cable, IP69K
B05 = 5m 3-core unscreened cable, IP69K
B10 = 10m 3-core unscreened cable, IP69K
S01 = 1m 3-core screened cable, IP69K (A3 output options – see note)
S05 = 5m 3-core screened cable, IP69K
S10 = 10m 3-core screened cable, IP69K
C01 = M12 screw locking receptacle

DUAL OUTPUT SRH502P

Measurement range = angle in °

Output
A1 = Analog 0.5-4.5Vdc
A2 = Analog 0-10Vdc
A3 = Analog 4-20mA
A4 = Analog 0.1-4.9Vdc
P1 = PWM, 244 Hz
P2 = PWM, 500 Hz
P3 = PWM, 1000 Hz

Direction
3 = Both clockwise
4 = Both anticlockwise
5 = CH1 CW; CH2 ACW

Cable code
A00 = No cable, gland fitting
S00 = No cable, screened cable gland (A3 output option – see note)
B01 = 1m 4-core unscreened cable, IP69K
B05 = 5m 4-core unscreened cable, IP69K
B10 = 10m 4-core unscreened cable, IP69K
S01 = 1m 4-core screened cable, IP69K (A3 output options – see note)
S05 = 5m 4-core screened cable, IP69K
S10 = 10m 4-core screened cable, IP69K
C01 = M12 screw locking receptacle

Accessories (order separately)
Drive lever kit – SA202195/MK - see page 25
Mating connectors - see details on page 26
PHASING OF SHAFT TO HOUSING

Output increases for ACW unit when viewed on shaft
Output increases for CW unit when viewed on shaft
Sensor is at mid electrical angle when shaft flat is facing towards the cable exit as shown.

LEVER OPTIONS (order separately)

Lever SA202195/MK1 L = 155
Lever SA202195/MK2 L = 230
EL**ECTRICAL CONNECTIONS**

Option A00 - No cable supplied
Option S00 - No cable supplied (Fitted gland to suit screened cable)
Option Bxx - Cable supplied (1m, 5m or 10m)
Option Sxx - Screened cable supplied (1m, 5m or 10m)
Option C01 - Series M12 screw locking receptacle to IEC 61076-2-101 (Ed.1) /IEC 60947-5-2 fitted to sensor body. Mating cabled sockets to be ordered separately.

CONNECTING CABLE OPTIONS

Connection details for option Bxx and Sxx

Connection details for option C01 - M12 connector (not available for output A3)

Connection details for no cable option A00 S00

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with indefinite reverse polarity protection and short circuit protection between output to GND, but if the outputs are connected to the supply this will result in device failure.
PERFORMANCE

ELECTRICAL

Measurement range ° 20 to 360 in 1° increments
Supply voltage Vdc 9 to 30 (unregulated) and 5 ±0.5 (regulated)
Over voltage protection Vdc Up to 40 (-40 to +60°C)
Maximum supply current mA <12.5
Reverse polarity protection Yes
Short circuit protection output to GND Yes output to supply
Power-on settlement time S <1
Resolution % 0.025 of measurement range (12 bit)
Non-linearity* % <±0.4
Temperature coefficient ppm/°C <±50

*Non-linearity is measured using the Least-Squares method on a computerised calibration system

Analog Output (order code A) - see graph on page 31

Voltage output range 9-30V supply Vdc Absolute voltage, 0.5 to 4.5 over measurement range (±3%)
5V supply Vdc Ratiometric output voltage - 10 to 90% of Vs over measurement range (±1%)
Monotonic range Vdc 0.25 (5%) and 4.75 (95%) nominal
Load resistance Ω 10k minimum (resistive to GND)
Output noise mVrms <1
Input/output delay mS <2

PWM Output (order code P) - See output characteristics on page 31

PWM frequency Hz 244 ±20% over temperature range
PWM levels 9-30V supply Vdc 0 and 5 nominal (±3%)
5V supply Vdc 0 and Vs (±1%)
Duty cycle % 10 to 90 over measurement range
Monotonic range % 5 and 95 nominal
Load resistance Ω 10k minimum (resistive to GND)
Rise/fall time µS <20

MECHANICAL

Mechanical angle ° 360, continuous
Operating torque - max g-cm 1000
Shaft velocity max %/sec 3600
Weight g 500
Mounting Use 3 x M6 threaded holes in front face or 3 x M6 clearance holes through the body - see dimensions for details
Phasing When the shaft flat is facing the scribed mark on the front face (as shown in the diagram), sensor output is at mid travel (±5°)
ENVIRONMENTAL

Protection class
Life
Dither life
Operational temperature
Storage temperature
Vibration
Shock
EMC Immunity level

IP68
20 million operations (10 x 10^6 cycles) of ±75°

Sensing element life is essentially infinite (contactless), but the SRH880P life figures refer to the shaft seal. Mechanical load (axial and radial) on the shaft should also be considered.

Contactless - no degradation due to shaft dither

-40 to +120 (5V and 9V supply)
-40 to +90 (30V supply)

-55 to +125

10 to 2000Hz Random - 12.6gn rms - all axes
Survival to 2500g - all axes

BS EN 61000-4-3:1999 to 100V/m, 80MHz to 1G Hz and 1.4G Hz to 2.7GHz (2004/108/EC)

If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS

Measurement range (angle)
Output
Output direction
Cabled socket
Body material
Operating levers
OEM options

Select from 20° to 360° in 1° increments (factory programmed) for each output channel
Analog voltage (A) or PWM (Pn)
Clockwise or Anticlockwise shaft rotation with increasing output
2m or 5m cabled socket assemblies available
Optional anodised aluminium or corrosion resistant stainless steel housing
Operating levers 155 or 230mm long should be ordered separately. See details page 25

Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; alternative PWM frequencies; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.

AVAILABILITY

All standard configurations can be supplied rapidly from the factory - check with your local supplier for more details.

ORDERING CODES

SRH880P/ / / / /

Measuring range = angle in °
Output A = Analog
P = PWM
Direction 1 = Clockwise
2 = Anticlockwise
Cabled socket 00 = None
02 = 2m
05 = 5m
Body material AL = Aluminium
SS = Stainless steel

Accessories (order separately)
Drive lever kit – SA202195/MK - see page 25
DIMENSIONS
Note: drawings not to scale

LEVER OPTIONS
See SRH501P page 25

ELECTRICAL CONNECTIONS

Straight cabled socket
E series M12 to IEC 61076-2-101(Ed.1) /IEC 60947-5-2,
PUR jacket
Conforms to VDE 0472 part 804
Cable temperature range -25 to +90°C

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Cable colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brown</td>
<td>0V Supply (G.ND)</td>
</tr>
<tr>
<td>2</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Blue</td>
<td>+V Supply</td>
</tr>
<tr>
<td>4</td>
<td>Black</td>
<td>O output</td>
</tr>
</tbody>
</table>

Output increases for ACW unit when viewed on shaft
Output increases for CW unit when viewed on shaft

When connecting the sensor, care should be taken with the correct connections.
The sensor is provided with indefinite reverse polarity protection and short circuit protection
between output (Pin 4 - Black) to GND (Pin 1 - Brown), but if the output (Pin 4 - Black) is
connected to the supply this will result in device failure.
TEMPERATURE AND OUTPUT GRAPHS

MAXIMUM OPERATING TEMPERATURE - DERATING GRAPHS

SRH280P

SRH280DP, NRH280DP, TPS280DP, SRH220DP
SRH501P/502P (not A2 & A3 options)

SRH220DR, SRH501P/502P - OUTPUT A2

SRH501P/502P - OUTPUT A3

A3 Typical temperature slope characteristic (can be used for compensation)
PWM OUTPUT CHARACTERISTICS

SRH501P/502P - OUTPUT A1 & A6

SRH880P - OUTPUT A

- PWM levels = zero volt and 5V (±3%) for 9-30V supply
- = zero volt and V_s (±1%) for 5V supply

Senor electrical angle (from ordering code)

Actual measured output angle = $1.25 \frac{t}{T}$

D = duty cycle = \frac{t}{T}

T = periodic time = \frac{1}{f}

Outputs A1 and A6 shown

SRH220DR, SRH501P/502P - OUTPUT A2 (0-10Vdc)

SRH501P/502P - OUTPUT A3 (4-20mA)

PWM OUTPUT CHARACTERISTICS

SRH280P, SRH280DP, NRH280DP, NRH285DR, TPS280DP, SRH220DR - OUTPUT P1, P2, P3

SRH501P/502P - OUTPUT P1, P2, P3

SRH880P - OUTPUT P

- PWM levels = zero volt and 5V (±3%) for 9-30V supply
- = zero volt and V_s (±1%) for 5V supply
Penny & Giles
Position sensors, joysticks and solenoids for commercial and industrial applications.

15 Airfield Road
Christchurch
Dorset BH23 3TG
United Kingdom
+44 (0) 1202 409409
+44 (0) 1202 409475 Fax
sales@pennyandgiles.com

665 North Baldwin Park Boulevard
City of Industry, CA 91746
USA
+1 626 480 2150
+1 626 369 6318 Fax
us.sales@pennyandgiles.com

Straussenlettenstr. 7b
85053 Ingolstadt,
Germany
+49 (0) 841 61000
+49 (0) 841 61300 Fax
info@penny-giles.de

3-1-A, Xiandai Square,
No 333 Xingpu Rd,
Suzhou Industrial Park, 215126
China
+86 512 6287 3380
+86 512 6287 3390 Fax
sales@pennyandgiles.com.cn

The information contained in this brochure on product applications should be used by customers for guidance only. Penny+Giles Controls Ltd makes no warranty or representation in respect of product fitness or suitability for any particular design application, environment, or otherwise, except as may subsequently be agreed in a contract for the sale and purchase of products. Customer’s should therefore satisfy themselves of the actual performance requirements and subsequently the products suitability for any particular design application and the environment in which the product is to be used.

Continual research and development may require change to products and specification without prior notification. All trademarks acknowledged.

© Penny+Giles Controls Ltd 2010

Innovation In Motion